World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Electrospinning and Electrospraying with Cells for Applications in Biomanufacturing

    https://doi.org/10.1142/S1793984421410038Cited by:1 (Source: Crossref)
    This article is part of the issue:

    Biomanufacturing of cell-laden scaffolds with biomimetic cell-scaffold organizations resembling the structures and anatomy of human body tissues and organs holds great promise in tissue engineering and regenerative medicine. In human body tissues and organs, specific types of cells are supported by nanofibrous extracellular matrix (ECM) in well-defined three-dimensional (3D) manners. Electrospinning is a facile and effective technique for producing nanofibrous scaffolds, which exhibit high similarities in the structure compared to ECM that offers structural and mechanical supports to cells in the human body. The incorporation within the electrospun nanofibrous scaffolds has therefore been considered as a promising approach for biomanufacturing of cell-laden scaffolds with tissue-mimicking structures. However, limited by low controllability of conventional cell seeding strategies and small sizes of interconnected pores of normal electrospun scaffolds, it is highly difficult to incorporate living cells within electrospun scaffolds on demand and results in cell-laden scaffolds with desirable 3D cell-scaffold organization. With recent advances in electrospinning and electrospraying with cells, it is visible to directly incorporate living cells within scaffolds via cell microencapsulation approaches and therefore offer promising alternatives for biomanufacturing of cell-laden scaffolds with tissue-mimicking structures. In this review, we will summarize the applications and challenges of cell seeding strategies and cell microencapsulation technologies for incorporating cells within electrospun scaffolds. Some techniques with high potentials to be integrated with electrospinning for forming the cell-laden scaffolds in continuous and noncontact manners, including aerodynamic-assisted cell microencapsulation, hydrodynamic-assisted cell microencapsulation and electrohydrodynamic-assisted cell microencapsulation (i.e., cell electrospinning and cell electrospraying), are highlighted. In particular, the cell microencapsulation and the subsequent formation of cell-laden scaffolds directly by electrospinning and electrospraying with living cells are overviewed in a detailed manner. Finally, the perspective and challenges of electrospinning and electrospraying with cells for biomanufacturing of cell-laden scaffolds with tissue-mimicking structures are discussed.

    References

    • 1. A. Khademhosseini and R. Langer , Nat. Protocols 11, 1775 (2016). CrossrefGoogle Scholar
    • 2. S. Badylak and N. Rosenthal , NPJj Regenerative Med. 2, 2 (2017). CrossrefGoogle Scholar
    • 3. E. S. Place, J. H. George, C. K. Williams and M. M. Stevens , Chem. Soc. Rev. 38, 1139 (2009). CrossrefGoogle Scholar
    • 4. P. Chan and K. W. Leong , Euro. Spine J. 17, 467 (2008). CrossrefGoogle Scholar
    • 5. R. O. Hynes , Science 326, 1216 (2009). CrossrefGoogle Scholar
    • 6. M. Wang , Biomaterials 24, 2133 (2003). CrossrefGoogle Scholar
    • 7. M. P. Lutolf and J. A. Hubbell , Nat. Biotechnol. 23, 47 (2005). CrossrefGoogle Scholar
    • 8. S. J. Hollister , Nat. Mater. 4, 518 (2005). CrossrefGoogle Scholar
    • 9. K. S. Ogueri and C. T. Laurencin , ACS Nano 14, 9347 (2020). CrossrefGoogle Scholar
    • 10. J. Ding, J. Zhang, J. Li, D. Li, C. Xiao, H. Xiao, H. Yang, X. Zhuang and X. Chen , Prog. Polym. Sci. 90, 1 (2019). CrossrefGoogle Scholar
    • 11. S. Chen, R. Li, X. Li and J. Xie , Adv. Drug Deliv. Rev. 132, 188 (2018). CrossrefGoogle Scholar
    • 12. Q. Zhao, H. Cui, J. Wang, H. Chen, Y. Wang, L. Zhang, X. Du and M. Wang , ACS Appl. Mater. Interf. 10, 23583 (2018). CrossrefGoogle Scholar
    • 13. W. Liu, S. Thomopoulos and Y. Xia , Adv. Health. Mater. 1, 10 (2012). CrossrefGoogle Scholar
    • 14. S. Khorshidi, A. Solouk, H. Mirzadeh, S. Mazinani, J. M. Lagaron, S. Sharifi and S. Ramakrishna , J. Tissue Eng. Regen. Med. 10, 715 (2016). CrossrefGoogle Scholar
    • 15. G. Orive, R. M. Hernandez, A. R. Gascon, R. Calafiore, T. M. S. Chang, P. De Vos, G. Hortelano, D. Hunkeler, I. Lacik, A. M. J. Shapiro and J. L. Pedraz , Nat. Med. 9, 104 (2003). CrossrefGoogle Scholar
    • 16. H. Uludag, P. De Vos and P. A. Tresco , Adv. Drug Deliv. Rev. 42, 29 (2000). CrossrefGoogle Scholar
    • 17. G. Orive, E. Santos, D. Poncelet, R. M. Hernandez, J. L. Pedraz, L. U. Wahlberg, P. De Vos and D. Emerich , Trends Pharmacol. Sci. 36, 537 (2015). CrossrefGoogle Scholar
    • 18. L. A. L. Fliervoet and E. Mastrobattista , Adv. Drug Deliv. Rev. 106, 63 (2016). CrossrefGoogle Scholar
    • 19. S. N. Jayasinghe, A. N. Qureshi and P. A. Eagles , Small 2, 216 (2006). CrossrefGoogle Scholar
    • 20. S. N. Jayasinghe, J. Auguste and C. J. Scotton , Adv. Mater. 27, 7794 (2015). CrossrefGoogle Scholar
    • 21. Q. Zhao, J. Wang, H. Cui, H. Chen, Y. Wang and X. Du , Adv. Funct. Mater. 28, 1801027 (2018). CrossrefGoogle Scholar
    • 22. K. Wang, M. Xu, M. Zhu, H. Su, H. Wang, D. Kong and L. Wang , J. Biomed. Mater. Res. A. 101, 3474 (2013). CrossrefGoogle Scholar
    • 23. M. C. Phipps, W. C. Clem, J. M. Grunda, G. A. Clines and S. L. Bellis , Biomaterials 33, 524 (2012). CrossrefGoogle Scholar
    • 24. J. Rnjak-Kovacina and A. S. Weiss , Tissue Eng. B. Rev. 17, 365 (2011). CrossrefGoogle Scholar
    • 25. A. Blakeney, A. Tambralli, J. M. Anderson, A. Andukuri, D. J. Lim, D. R. Dean and H. W. Jun , Biomaterials 32, 1583 (2011). CrossrefGoogle Scholar
    • 26. B. M. Baker, A. O. Gee, R. B. Metter, A. S. Nathan, R. A. Marklein, J. A. Burdick and R. L. Mauck , Biomaterials 29, 2348 (2008). CrossrefGoogle Scholar
    • 27. S. Place, N. D. Evans and M. M. Stevens , Nat. Mater. 8, 457 (2009). CrossrefGoogle Scholar
    • 28. X. C. Yang, J. D. Shah and H. J. Wang , Tissue Eng. Pt. A. 15, 945 (2009). CrossrefGoogle Scholar
    • 29. J. J. Stankus, J. Guan, K. Fujimoto and W. R. Wagner , Biomaterials 27, 735 (2006). CrossrefGoogle Scholar
    • 30. G. Vunjak-Novakovic, B. Obradovic, I. Martin, P. M. Bursac, R. Langer and L. E. Freed , Biotechnol. Progr. 14, 193 (1998). CrossrefGoogle Scholar
    • 31. A. Mathews, S. Colombus, V. K. Krishnan and L. K. Krishnan , J. Tissue. Eng. Regen. M. 6, 451 (2012). CrossrefGoogle Scholar
    • 32. M. H. Ng, S. R. Chowdhury, M. Morshed, K. K. Tan, G. H. Tan, M. Y. Phang, B. S. Aminuddin, O. Fauziah and B. H. I. Ruszymah , J. Biomater. Tiss. Eng. 4, 573 (2014). CrossrefGoogle Scholar
    • 33. S. Haykal, M. Salna, Y. Z. Zhou, P. Marcus, M. Fatehi, G. FrostMsc, T. Machuca, S. O. P. Hofer and T. K. Waddell , Tissue Eng. C. Meth. 20, 681 (2014). CrossrefGoogle Scholar
    • 34. W. T. Godbey, B. S. S. Hindy, M. E. Sherman and A. Atala , Biomaterials 25, 2799 (2004). CrossrefGoogle Scholar
    • 35. Z. Z. Zhang, D. Jiang, S. J. Wang, Y. S. Qi, J. Y. Zhang and J. K. Yu , ACS Appl. Mater. Interf. 7, 15294 (2015). CrossrefGoogle Scholar
    • 36. X. G. Lv, C. Feng, Q. Fu, H. Xie, Y. Wang, J. W. Huang, M. K. Xie, A. Atala, Y. M. Xu and W. X. Zhao , J. Biomed. Mater. Res. B 104, 1098 (2016). CrossrefGoogle Scholar
    • 37. W. J. Li, Y. J. Jiang and R. S. Tuan , Tissue Eng. Pt. A 14, 639 (2008). CrossrefGoogle Scholar
    • 38. W. J. Fu, Y. D. Xu, Z. X. Wang, G. Li, J. G. Shi, F. Z. Cui, Y. Y. Zhang and X. Zhang , J. Biomed. Mater. Res. A 100a, 1725 (2012). CrossrefGoogle Scholar
    • 39. I. Katouzian and S. M. Jafari , Trends Food Sci. Tech. 53, 34 (2016). CrossrefGoogle Scholar
    • 40. M. Pattnaik, P. Pandey, G. J. O. Martin, H. N. Mishra and M. Ashokkumar , Foods 10, 279 (2021). CrossrefGoogle Scholar
    • 41. L. M. C. Aguilar, S. M. Silva and S. E. Moulton , J. Control. Release 306, 40 (2019). CrossrefGoogle Scholar
    • 42. T. M. S. Chang , Science 146, 524 (1964). CrossrefGoogle Scholar
    • 43. J. M. Rabanel, X. Banquy, H. Zouaoui, M. Mokhtar and P. Hildgen , Biotechnol. Prog. 25, 946 (2009). CrossrefGoogle Scholar
    • 44. G. Orive, E. Santos, J. L. Pedraz and R. M. Hernandez , Adv. Drug Deliv. Rev. 67–68, 3 (2014). CrossrefGoogle Scholar
    • 45. R. M. Olabisi , J. Biomed. Mater. Res. A. 103, 846 (2015). CrossrefGoogle Scholar
    • 46. Lim and A. M. Sun , Science 210, 908 (1980). CrossrefGoogle Scholar
    • 47. K. Senior , Drug Discov. Today 6, 6 (2001). CrossrefGoogle Scholar
    • 48. R. P. Lanza, J. L. Hayes and W. L. Chick , Nat. Biotechnol. 14, 1107 (1996). CrossrefGoogle Scholar
    • 49. J. Leijten, J. Seo, K. Yue, G. T. Santiago, A. Tamayol, G. U. Ruiz-Esparza, S. R. Shin, R. Sharifi, I. Noshadi, M. M. Alvarez, Y. S. Zhang and A. Khademhosseini , Mater. Sci. Eng. R. Rep. 119, 1 (2017). CrossrefGoogle Scholar
    • 50. S. Ahadian, R. B. Sadeghian, S. Salehi, S. Ostrovidov, H. Bae, M. Ramalingam and A. Khademhosseini , Bioconjug. Chem. 26, 1984 (2015). CrossrefGoogle Scholar
    • 51. K. Y. Lee and D. J. Mooney , Chem. Rev. 101, 1869 (2001). CrossrefGoogle Scholar
    • 52. X. Du, H. Cui, Q. Zhao, J. Wang, H. Chen and Y. Wang , Research 2019, 6398296 (2019). Google Scholar
    • 53. D. Nicodemus and S. J. Bryant , Tissue Eng. B. Res. 14, 149 (2008). CrossrefGoogle Scholar
    • 54. S. Wust, M. E. Godla, R. Muller and S. Hofmann , Acta Biomater. 10, 630 (2014). CrossrefGoogle Scholar
    • 55. T. Gold, D. M. Varma, D. Harbottle, M. S. Gupta, S. S. Stalling, P. J. Taub and S. B. Nicoll , J. Biomed. Mater. Res. A. 102, 4536 (2014). Google Scholar
    • 56. M. S. Bae, J. Y. Ohe, J. B. Lee, D. N. Heo, W. Byun, H. Bae, Y. D. Kwon and I. K. Kwon , Bone 59, 189 (2014). CrossrefGoogle Scholar
    • 57. C. G. Williams, A. N. Malik, T. K. Kim, P. N. Manson and J. H. Elisseeff , Biomaterials 26, 1211 (2005). CrossrefGoogle Scholar
    • 58. X. Z. Shu, Y. C. Liu, Y. Luo, M. C. Roberts and G. D. Prestwich , Biomacromolecules 3, 1304 (2002). CrossrefGoogle Scholar
    • 59. X. Z. Shu, S. Ahmad, Y. C. Liu and G. D. Prestwich , J. Biomed. Mater. Res. A. 79a, 902 (2006). CrossrefGoogle Scholar
    • 60. C. N. Salinas, B. B. Cole, A. M. Kasko and K. S. Anseth , Tissue Eng. 13, 1025 (2007). CrossrefGoogle Scholar
    • 61. Q. Liu, A. Chiu, L. H. Wang, D. An, M. Zhong, A. M. Smink, B. J. de Haan, P. de Vos, K. Keane, A. Vegge, E. Y. Chen, W. Song, W. F. Liu, J. Flanders, C. Rescan, L. G. Grunnet, X. Wang and M. Ma , Nat. Commun. 10, 5262 (2019). CrossrefGoogle Scholar
    • 62. H. Hajiali, J. A. Heredia-Guerrero, I. Liakos, A. Athanassiou and E. Mele , Biomacromolecules 16, 936 (2015). CrossrefGoogle Scholar
    • 63. A. Garate, J. Ciriza, J. G. Casado, R. Blazquez, J. L. Pedraz, G. Orive and R. M. Hernandez , Mol. Pharm. 12, 3953 (2015). CrossrefGoogle Scholar
    • 64. E. P. Herrero, E. M. M. Del Valle and M. A. Galan , Biotechnol. Prog. 23, 940 (2007). CrossrefGoogle Scholar
    • 65. T. Maguire, E. Novik, R. Schloss and M. Yarmush , Biotechnol. Bioeng. 93, 581 (2006). CrossrefGoogle Scholar
    • 66. M. Chavarri, I. Maranon, R. Ares, F. C. Ibanez, F. Marzo and M. D. Villaran , Int. J. Food Microbiol. 142, 185 (2010). CrossrefGoogle Scholar
    • 67. S. Sakai, I. Hashimoto and K. Kawakami , J. Biomat. Sci.-Polym. E. 19, 937 (2008). CrossrefGoogle Scholar
    • 68. L. Klouda, K. R. Perkins, B. M. Watson, M. C. Hacker, S. J. Bryant, R. M. Raphael, F. K. Kasper and A. G. Mikos , Acta Biomater. 7, 1460 (2011). CrossrefGoogle Scholar
    • 69. E. Donath, S. Moya, B. Neu, G. B. Sukhorukov, R. Georgieva, A. Voigt, H. Baumler, H. Kiesewetter and H. Mohwald , Chem.-Eur. J. 8, 5481 (2002). CrossrefGoogle Scholar
    • 70. A. Diaspro, D. Silvano, S. Krol, O. Cavalleri and A. Gliozzi , Langmuir 18, 5047 (2002). CrossrefGoogle Scholar
    • 71. Y. Teramura, Y. Kaneda and H. Iwata , Biomaterials 28, 4818 (2007). CrossrefGoogle Scholar
    • 72. N. G. Veerabadran, P. L. Goli, S. S. Stewart-Clark, Y. M. Lvov and D. K. Mills , Macromol. Biosci. 7, 877 (2007). CrossrefGoogle Scholar
    • 73. Lee, J. Choi, J. H. Park, M. H. Kim, D. Hong, H. Cho, S. H. Yang and I. S. Choi , Angew. Chem. Int. Edit. 53, 8056 (2014). CrossrefGoogle Scholar
    • 74. A. Abalovich, C. Jatimliansky, E. Diegex, M. Arias, A. Altamirano, C. Amorena, B. Martinez and M. Nacucchio , Transplant. Proc. 33, 1977 (2001). CrossrefGoogle Scholar
    • 75. N. Bremond, E. Santanach-Carreras, L. Y. Chu and J. Bibette , Soft Matter 6, 6207 (2010). CrossrefGoogle Scholar
    • 76. S. Sakai, I. Hashimoto and K. Kawakami , Biotechnol. Bioeng. 99, 235 (2008). CrossrefGoogle Scholar
    • 77. S. Sakai, S. Ito, Y. Ogushi, I. Hashimoto, N. Hosoda, Y. Sawae and K. Kawakami , Biomaterials 30, 5937 (2009). CrossrefGoogle Scholar
    • 78. S. Arumuganathar, S. Irvine, J. R. McEwan and S. N. Jayasinghe , J. Appl. Polym. Sci. 107, 1215 (2008). CrossrefGoogle Scholar
    • 79. Q. Zhao, H. Cui, Y. Wang and X. Du , Small 16, 1903798 (2020). CrossrefGoogle Scholar
    • 80. A. Rang, J. Park, J. Ju, G. S. Jeong and S. H. Lee , Biomaterials 35, 2651 (2014). CrossrefGoogle Scholar
    • 81. H. Onoe, T. Okitsu, A. Itou, M. Kato-Negishi, R. Gojo, D. Kiriya, K. Sato, S. Miura, S. Iwanaga, K. Kuribayashi-Shigetomi, Y. T. Matsunaga, Y. Shimoyama and S. Takeuchi , Nat. Mater. 12, 584 (2013). CrossrefGoogle Scholar
    • 82. C. Kim, S. Chung, Y. E. Kim, K. S. Lee, S. H. Lee, K. W. Oh and J. Y. Kang , Lab Chip 11, 246 (2011). CrossrefGoogle Scholar
    • 83. T. J. Sill and H. A. von Recum , Biomaterials 29, 1989 (2008). CrossrefGoogle Scholar
    • 84. C. Wang and M. Wang , Front. Mater. Sci. 8, 3 (2014). CrossrefGoogle Scholar
    • 85. A. Martins, A. R. Duarte, S. Faria, A. P. Marques, R. L. Reis and N. M. Neves , Biomaterials 31, 5875 (2010). CrossrefGoogle Scholar
    • 86. S. Liu, J. Zhao, H. Ruan, W. Wang, T. Wu, W. Cui and C. Fan , Mater. Sci. Eng. C 33, 1176 (2013). CrossrefGoogle Scholar
    • 87. B. Song, C. Wu and J. Chang , Acta Biomater. 8, 1901 (2012). CrossrefGoogle Scholar
    • 88. Y. Zhou, Q. Zhao and M. Wang , MRS Commun. 9, 1098 (2019). CrossrefGoogle Scholar
    • 89. Q. Zhao, W. W. Lu and M. Wang , Mater. Lett. 193, 1 (2017). CrossrefGoogle Scholar
    • 90. Y. Zhou, Q. Zhao, N. L. Y. Tsai and M. Wang , MRS Commun. 9, 413 (2019). CrossrefGoogle Scholar
    • 91. C. Liao and K. W. Leong , Biomaterials 32, 1669 (2011). CrossrefGoogle Scholar
    • 92. H. Jiang, Y. Hu, Y. Li, P. Zhao, K. Zhu and W. Chen , J. Control. Release 108, 237 (2005). CrossrefGoogle Scholar
    • 93. Q. Zhao and M. Wang , Mater. Lett. 162, 48 (2016). CrossrefGoogle Scholar
    • 94. A. Lopez-Rubio, E. Sanchez, Y. Sanz and J. M. Lagaron , Biomacromolecules 10, 2823 (2009). CrossrefGoogle Scholar
    • 95. M. F. Canbolat, C. Tang, S. H. Bernacki, B. Pourdeyhimi and S. Khan , Macromol. Biosci. 11, 1346 (2011). CrossrefGoogle Scholar
    • 96. A. Townsend-Nicholson and S. N. Jayasinghe , Biomacromolecules 7, 3364 (2006). CrossrefGoogle Scholar
    • 97. M. Windbergs, Y. Zhao, J. Heyman and D. A. Weitz , J. Am. Chem. Soc. 135, 7933 (2013). CrossrefGoogle Scholar
    • 98. N. Bock, T. R. Dargaville and M. A. Woodruff , Prog. Polym. Sci. 37, 1510 (2012). CrossrefGoogle Scholar
    • 99. Q. Zhao and M. Wang , Polym. Degrad. Stabil. 162, 169 (2019). CrossrefGoogle Scholar
    • 100. P. Patel, S. Irvine, J. R. McEwan and S. N. Jayasinghe , Soft Matter 4, 1219 (2008). CrossrefGoogle Scholar
    • 101. Q. Zhao, Y. Zhou and M. Wang , Acta Biomater. 123, 312 (2021). CrossrefGoogle Scholar
    • 102. W. Salalha, J. Kuhn, Y. Dror and E. Zussman , Nanotechnology 17, 4675 (2006). CrossrefGoogle Scholar
    • 103. M. Gensheimer, M. Becker, A. Brandis-Heep, J. H. Wendorff, R. K. Thauer and A. Greiner , Adv. Mater. 19, 2480 (2007). CrossrefGoogle Scholar
    • 104. S. Klein, J. Kuhn, R. Avrahami, S. Tarre, M. Beliavski, M. Green and E. Zussman , Biomacromolecules 10, 1751 (2009). CrossrefGoogle Scholar
    • 105. Y. Liu, M. H. Rafailovich, R. Malal, D. Cohn and D. Chidambaram , Proc. Natl. Acad. Sci. USA. 106, 14201 (2009). CrossrefGoogle Scholar
    • 106. M. Gensheimer, A. Brandis-Heep, S. Agarwal, R. K. Thauer and A. Greiner , Macromol. Biosci. 11, 333 (2011). CrossrefGoogle Scholar
    • 107. E. Ng, P. Joly, S. N. Jayasinghe, B. Vernay, R. Knight, S. P. Barry, J. McComick, D. Latchman and A. Stephanou , Biotechnol. J. 6, 86 (2011). CrossrefGoogle Scholar
    • 108. A. Abeyewickreme, A. Kwok, J. R. McEwan and S. N. Jayasinghe , Integr. Biol. 1, 260 (2009). CrossrefGoogle Scholar
    • 109. S. N. Jayasinghe, G. Warnes and C. J. Scotton , Macromol. Biosci. 11, 1364 (2011). CrossrefGoogle Scholar
    • 110. K. Bartolovic, N. Mongkoldhumrongkul, S. N. Waddington, S. N. Jayasinghe and S. J. Howe , Analyst 135, 157 (2010). CrossrefGoogle Scholar
    • 111. D. Poncelet, P. de Vos, N. Suter and S. N. Jayasinghe , Adv. Healthc. Mater. 1, 27 (2012). CrossrefGoogle Scholar
    • 112. Q. Zhao, J. Wang, Y. Wang, H. Cui and X. Du , Natl. Sci. Rev. 7, 629 (2020). CrossrefGoogle Scholar
    • 113. Q. Zhao, C. Li, H. C. Shum and X. Du , Lab Chip 20, 4321 (2020). CrossrefGoogle Scholar
    • 114. Q. Zhao, Y. Wang, H. Cui and X. Du , J. Mater. Chem. C 7, 6493 (2019). CrossrefGoogle Scholar
    • 115. J. A. Brassard, M. Nikolaev, T. Hubscher, M. Hofer and M. P. Lutolf , Nat. Mater. 20, 22 (2021). CrossrefGoogle Scholar