Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Effect of doping in multiferroic BFO: A review

    https://doi.org/10.1142/S2010135X21300012Cited by:29 (Source: Crossref)

    Bismuth ferrite (BFO) nanostructures and thin films have gained attraction as suitable candidates for energy storage and energy conversion due to their high energy storage efficiency, temperature stability and low dielectric loss. Electrical properties of such multiferroic materials are tailored by ferroelectric and ferromagnetic constituents and have opened up amazing avenues in electrochemical supercapacitor and photovoltaic applications. Dopants play a significant role in optimizing the magnetic and dielectric properties of such materials owing to suitable applications. This review highlights the scientific advancements reported in BFO nanostructures for energy applications by optimizing their magnetic and dielectric properties. This paper starts with a brief introduction of BFO and a discussion on the effects of various dopants by different synthesis techniques, and their effects on the magnetic and dielectric properties are also portrayed. Eventually, this review summarizes the various doping effects, which paves way for future research on this multiferroic material.