World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
QCD Evolution Workshop: From Collinear to Non-Collinear Case; Editors: Ian Balitsky, Alexei Prokudin, Anatoly RadyushkinOpen Access

EVOLUTION OF CONFORMAL COLOR DIPOLES AND HIGH-ENERGY AMPLITUDES IN formula SYM

    https://doi.org/10.1142/S2010194511001516Cited by:0 (Source: Crossref)

    The high-energy behavior of the SYM amplitudes in the Regge limit can be calculated order by order in perturbation theory using the high-energy operator expansion in Wilson lines. At large Nc, a typical four-point amplitude is determined by a single BFKL pomeron. The conformal structure of the four-point amplitude is fixed in terms of two functions: pomeron intercept and the coefficient function in front of the pomeron (the product of two residues). The pomeron intercept is universal while the coefficient function depends on the correlator in question. The intercept is known in the first two orders in coupling constant: BFKL intercept and NLO BFKL intercept calculated in Ref. [1]. As an example of using the Wilson-line OPE, we calculate the coefficient function in front of the pomeron for the correlator of four Z2 currents in the first two orders in perturbation theory.

    PACS: 12.38.Bx, 12.38.Cy