World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MICROSTRUCTURE AND WEAR RESISTANCE OF A COMPOSITE Gr/Al2O3/Al PRODUCED BY RECIPROCATING EXTRUSION

    https://doi.org/10.1142/S2010194512002589Cited by:2 (Source: Crossref)

    A reciprocating extrusion process was used to produce graphite and alumina reinforced pure aluminium composite. The graphite particles (0~5vol%), alumina particles (10 vol%) and pure aluminium particles (balanced) were dehydrated separately at 70°C in vacuum for 3 hours, and then mixed together. A round billet with 50 mm in diameter was prepared by hot pressing at 350°C with the mixed particles and then extruded to a fully-consolidated goblet-like sample at 480°C and 430MPa by reciprocating extrusion. The results showed that all reinforced particles were refined and uniformly distributed in the matrix by reciprocation extrusion severe plastic deformation. The presence of graphite particles caused the reduction in the friction coefficient and wear rate of the Gr/Al2O3/Al composite. Compared with the composite prepared only by alumina particles (10 vol%) and pure aluminium particles, the friction coefficient and wear rate of the Gr/Al2O3/Al composite, which contains 5vol% graphite and 10vol% alumina particles, decreased 45.3% and 33.5%, respectively, and thereafter it displays an excellent combination of low friction coefficient (0.37) and wear rate (2.2×10-7mm3/(N.m)), and appears to be more promising.