World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Light Alloys, Eco-Materials, and Biomaterials (Room I)Open Access

DEGRADATION BEHAVIOR OF A BIODEGRADABLE Fe-Mn ALLOY PRODUCED BY POWDER SINTERING

    https://doi.org/10.1142/S2010194512004138Cited by:0 (Source: Crossref)

    Biodegradable stenting and implantation materials have received considerable attention in biomaterials community, with magnesium having been received most wide attention. However, magnesium corrodes too fast by nature, in human body environment. A new type of biodegradable metal – Fe and its alloys – has been introduced in recent years. In this study, a Fe35wt%Mn alloy was produced using powder sintering. Powder mixture was mechanically milled, pressed and then sintered to consolidate powder compacts. Microstructure characterization and hardness measurement were carried out on the as-sintered samples. In vitro degradability evaluation of the samples was performed in 5% NaCl and Simulated Body Fluid (SBF) media. The experimental results show that a higher porosity results in a higher degradation rate. All samples, with porosity being from 6.5% to 12.2 %, revealed a degradation rate from 0.6 to 1.4 mm/year.