World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Parallel Sessions — B. Gravitational Waves, Radio Astronomy and Precision Tests of General RelativityOpen Access

PRINCIPLES OF GRAVITATIONAL WAVES DETECTION THROUGH ATOM INTERFEROMETRY

    https://doi.org/10.1142/S2010194513011185Cited by:0 (Source: Crossref)

    The output of a simple Mach-Zehnder atom interferometer (with light field beam splitters) is studied in order to obtain sensitivity curves for GW signals in the paraxial approximation by using the ABCD matrices techniques and first order perturbation theory for mirroratom interaction; order of magnitude of relevant physical parameters for a realistic GW detector through atom interferometry is deduced, both for single- and coupled-interferometers configurations. Finally a synthetic overview of ongoing activities of the Florence-Urbino group in this field is presented.

    PACS: 95.55.Ym, 37.25.+k