World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Proceedings of the 2nd International Workshop on Antimatter and Gravity (WAG 2013); University of Bern, Switzerland, 13-15 November 2013; Editors: Claude Amsler and Paola ScampoliOpen Access

Impact of high precision gravimetry in the context of a future new SI

    https://doi.org/10.1142/S2010194514602701Cited by:0 (Source: Crossref)

    In the early eighties, the development of ballistic absolute gravimeters based on laser interferometer opened the doors to new research areas in various scientific domains such as geodesy, geophysics or metrology. After a brief overview of the most used technique for gravity measurements, the implication of gravity in the context of an improved SI, especially for a new definition of the mass unit kg, will be presented.

    This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 3.0 (CC-BY) License. Further distribution of this work is permitted, provided the original work is properly cited.