Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Impact of Magneto-Deformation Effect in Ferrogels on the Echogenicity of Magnetic Composites

    https://doi.org/10.1142/S2010324723400027Cited by:2 (Source: Crossref)
    This article is part of the issue:

    Basically, this study was carried out in the context of the development of ferrogel-based biocompatible soft tissue implants, in particular, for the needs of regenerative medicine and replacement therapy. The magneto-deformation effect (MDE) of ferrogels (FGs) and the possibility of its visualization with the use of medical ultrasound were in the focus of this work. The aim of this investigation was addressed to search a possible relationship between the extent of MDE and the intensity of the reflected echo signal at the gel/water interface and in the gel interior. Cylindrical FGs 12mm in diameter and 7mm in height based on polyacrylamide (PAAm) with interpenetrating physical network of natural polysaccharide (Guar) filled with 200–300nm Fe3O4 magnetic microparticles (MPs) with weight fraction of 12% or 23% were investigated. MDE was studied using an ultrasonic medical device Sonoline Adara (Siemens, Germany), and estimated by the relative compression of FGs after application the constant gradient magnetic field (MF) up to 500 Oe by an electromagnet. Viscoelastic and acoustic properties of FGs in the absence of the application of an MF were determined as well. It was found that an increase of the weight fraction of MPs in FGs resulted in the significant increase of the ferrogel’s density, the elastic storage modulus, the loss modulus, the acoustic impedance, the reflection coefficient and some decrease of the ultrasonic velocity in FGs. At a given MPs concentration, the MDE in FGs was increased according to a quadratic law with the gradual increase of MF strength. The growth of MDE in FGs accompanies by an increase in the intensity of the reflected echo signal both from the gel/water interface and from the interior of the FGs. The obtained results are discussed from the viewpoint of the effects of MPs on the interaction of an ultrasonic wave with the structure of FGs in the course of MF application.