World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Magneto-Optical Spectroscopy of Nanocomposites (CoFeZr)xx(Al2O3)100x100x

    https://doi.org/10.1142/S2010324723400064Cited by:3 (Source: Crossref)
    This article is part of the issue:

    We present results of magneto-optical investigations of (CoFeZr)xx(Al2O3)100x3)100x film nanocomposites in transverse Kerr effect (TKE) geometry in the spectral range 0.5–4.0eV and magnetic field up to 3.0kOe. Nanocomposites were deposited onto a glass-ceramic substrate by ion-beam sputtering. The TKE response at room temperature strongly depends on the wavelength of light, applied magnetic field H and the volume metallic fraction. From the analysis of the field dependences of TKE at different wavelengths, it follows that in the as-deposited samples, the interaction between nanoparticles at x<30x<30at.% is small and the nanocomposite is an ensemble of superparamagnetic particles; as x increases to 32at.%, a superspinglass-type state arises, then, in the vicinity of 34at.%, along with individual superparamagnetic particles, superferromagnetic regions appear. Long-range ferromagnetic order arises at concentrations x less than the percolation threshold for conductivity xper=42.6xper=42.6at.%. In the presence of two different magnetic states in the samples, TKE is not proportional to the magnetization. Both the field dependences at near-infrared region and the spectral dependences of TKE change significantly after annealing of the samples, while the changes in the field dependences of the magnetization are almost imperceptibly.