World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The sine-law gap probability, Painlevé 5, and asymptotic expansion by the topological recursion

    https://doi.org/10.1142/S2010326314500130Cited by:6 (Source: Crossref)

    The goal of this paper is to rederive the connection between the Painlevé 5 integrable system and the universal eigenvalues correlation functions of double-scaled Hermitian matrix models, through the topological recursion method. More specifically we prove, to all orders, that the WKB asymptotic expansions of the τ-function as well as of determinantal formulas arising from the Painlevé 5 Lax pair are identical to the large N double scaling asymptotic expansions of the partition function and correlation functions of any Hermitian matrix model around a regular point in the bulk. In other words, we rederive the "sine-law" universal bulk asymptotic of large random matrices and provide an alternative perturbative proof of universality in the bulk with only algebraic methods. Eventually we exhibit the first orders of the series expansion up to O(N-5).

    AMSC: 15B52, 14H70, 37K10