Empirical likelihood for high-dimensional partially functional linear model
Abstract
This paper considers empirical likelihood inference for a high-dimensional partially functional linear model. An empirical log-likelihood ratio statistic is constructed for the regression coefficients of non-functional predictors and proved to be asymptotically normally distributed under some regularity conditions. Moreover, maximum empirical likelihood estimators of the regression coefficients of non-functional predictors are proposed and their asymptotic properties are obtained. Simulation studies are conducted to demonstrate the performance of the proposed procedure and a real data set is analyzed for illustration.