Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Large-dimensional random matrix theory and its applications in deep learning and wireless communications

    https://doi.org/10.1142/S2010326322300017Cited by:11 (Source: Crossref)

    Large-dimensional (LD) random matrix theory, RMT for short, which originates from the research field of quantum physics, has shown tremendous capability in providing deep insights into large-dimensional systems. With the fact that we have entered an unprecedented era full of massive amounts of data and large complex systems, RMT is expected to play more important roles in the analysis and design of modern systems. In this paper, we review the key results of RMT and its applications in two emerging fields: wireless communications and deep learning. In wireless communications, we show that RMT can be exploited to design the spectrum sensing algorithms for cognitive radio systems and to perform the design and asymptotic analysis for large communication systems. In deep learning, RMT can be utilized to analyze the Hessian, input–output Jacobian and data covariance matrix of the deep neural networks, thereby to understand and improve the convergence and the learning speed of the neural networks. Finally, we highlight some challenges and opportunities in applying RMT to the practical large-dimensional systems.

    AMSC: 15B52, 94A05, 62M45