World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

BRITTLE FRAGMENTATION OF AN EXPANDING RING BY MOLECULAR DYNAMICS

    https://doi.org/10.1142/S2047684113500103Cited by:0 (Source: Crossref)

    In this paper, the brittle fragmentation of an expanding ring is numerically studied by a simple atomistic model. We investigate the statistical distribution of fragment spanned over a wide range of strain rates when damage related to broken bond reaches a steady state. It is shown that at low strain rate limited number of heavy fragments can be generated because of anisotropic behavior while for high strain rate fragment can be well fitted with Weibull distribution. The physical mechanism of fragmentation process reveals that damage accompanying with numerous microcracks is found to initiate in the inner regime of the expanding ring. Furthermore, we discuss the effect of random defect on the fragmentation process.