Thermal wave reflection and propagation in temperature rate-dependent non-local diffusive solids
Abstract
The propagation and reflection of thermo-elastic waves through diffusive nonlocal isotropic medium had been studied in this paper. The Green–Lindsay model of thermo-elasticity is incorporated in the context of Temperature Rate Dependent Theory. Using Helmholtz vector decomposition rule, the system of governing equations has been transformed to their respective components. The dispersion relation in frequency indicates the existence of three coupled waves and one independent wave propagating through the medium. The coupled waves are affected by non-locality, temperature field and diffusivity in the medium; anyhow, un-coupled shear vertical wave is only affected by the non-local parameter. The reflection of -wave is also studied at the free boundary of the solid and their corresponding amplitude ratios are computed using set of suitable boundary conditions. The obtained results are further discussed graphically for significant physical parameters of interest. The results in the literature are obtained as a special case after ignoring the diffusivity in the solid.