World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Unsteady chemically reactive Maxwell nanofluid flow through a porous elastic surface with Cattaneo–Christov model

    https://doi.org/10.1142/S2047684124500222Cited by:0 (Source: Crossref)

    Novel nanomaterial applications claim distinct uses in thermal engineering, cooling processes, heat transfer devices, and automobile industries, among others. Motivated research uses modified heat and mass flux theories to present thermal observations for the unsteady flow of magnetized Maxwell nanofluid, confined by porous bidirectionally stretched surfaces. The heat transfer model’s extension is based on Joule heating and heat source effects. The Cattaneo–Christov theories govern the expansion of mass and heat transfer. We analyze thermal problems under zero-mass diffusion constraints. The use of proper variables simplifies mathematical modeling into a dimensionless form. The Homotopy Analysis Method (HAM) solves the dimensionless system. The paper highlights the convergence criteria for the HAM procedure. Graphics underline the problem’s physical perspective. We observe that the Deborah number enhances heat and mass transfer. The temperature profile decreases when the parameter becomes unstable.