World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Enhancing Traditional Recommender Systems via Social Communities

    https://doi.org/10.1142/S2196888819500040Cited by:1 (Source: Crossref)

    Collaborative Filtering (CF) has become the most popular approach for developing Recommender Systems in diverse business applications. Unfortunately, problems such as the cold-start problem (i.e., new users or items enter the system and for those no previous preference information is available) and the gray sheep problem (i.e., cases in which a user profile does not match any other profile in the user community) are widely recognized for hindering recommendation effectiveness of traditional CF methods. To alleviate such problems, substantial research has focused on enhancing CF with social information about users (e.g., social relationships and communities). However, despite the crescent interest in social-based approaches, researches and practitioners face the challenge of developing their own Recommender System architecture for appropriately combining social and collaborative filtering methods to improve recommendation results. In this paper, we address this issue by introducing a flexible architecture to support researchers and practitioners in the task of designing real-world Recommender Systems that exploit social network data. We focus on detailing our proposed architecture modules and their interplay, potential algorithms for extracting and combining relevant social information, and candidate technologies for handling diverse and massive data volumes. Additionally, we provide an empirical analysis demonstrating the effectiveness of the proposed architecture on alleviating the cold-start problem over a concrete experimental case.