World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Digital Image Evolution of Artwork Without Human Evaluation Using the Example of the Evolving Mona Lisa Problem

    https://doi.org/10.1142/S2196888822500075Cited by:2 (Source: Crossref)

    Whether for optimizing the speed of microprocessors or for sequence analysis in molecular biology — evolutionary algorithms are used in astoundingly many fields. Also, the art was influenced by evolutionary algorithms — with principles of natural evolution works of art that can be created or imitated, whereby initially generated art is put through an iterated process of selection and modification. This paper covers an application in which given images are emulated evolutionary using a finite number of semi-transparent overlapping polygons, which also became known under the name “Evolution of Mona Lisa”. In this context, different approaches to solve the problem are tested and presented here. In particular, we want to investigate whether Hill Climbing Algorithm in combination with Delaunay Triangulation and Canny Edge Detector that extracts the initial population directly from the original image performs better than the conventional Hill Climbing and Genetic Algorithm, where the initial population is generated randomly.