World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Computational study of switching mechanism in add A-riboswitch

    https://doi.org/10.1142/S0219633620400015Cited by:4 (Source: Crossref)
    This article is part of the issue:

    Riboswitch can bind small molecules to regulate gene expression. Unlike other RNAs, riboswitch relies on its conformational switching for regulation. However, the understanding of the switching mechanism is still limited. Here, we focussed on the add A-riboswitch to illustrate the dynamical switching mechanism as an example. We performed molecular dynamics simulation, conservation and co-evolution calculations to infer the dynamical motions and evolutionary base pairings. The results suggest that the binding domain is stable for molecule recognition and binding, whereas the switching base pairings are co-evolutionary for translation. The understanding of the add A-riboswitch switching mechanism provides a potential solution for riboswitch drug design.

    Remember to check out the Most Cited Articles!

    Check out our Chemistry New Titles