World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Hybrid Systems Modeling and Reachability-Based Controller Design Methods for Vehicular Automation

    https://doi.org/10.1142/S2301385014500071Cited by:3 (Source: Crossref)

    In this study, applicability of verification and correct-by-design hybrid systems modeling and reachability-based controllers for vehicular automation are investigated. Two perspectives in hybrid systems modeling will be introduced, and then reachability analysis techniques will be developed to compute exact reachable sets from a specified unsafe set. Using level set methods, a Hamilton–Jacobi–Isaacs equation is derived whose solutions describe the boundaries of the finite time backward reachable set, which will be manipulated to design a safe controller that guarantees the safety of a given system. An automated longitudinal controller with a fully integrated collision avoidance functionality will be designed as a hybrid system and validated through simulations with a number of different scenarios in order to illustrate the potential of verification methods in automated vehicles.

    This paper was recommended for publication in its revised form by editorial board member, Jun Xu.