World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on Advanced Air Mobility: Enabling Technologies and Applications
Editors: Junfei Xie, Yan Wan and Hao Liu
No Access

Data-Driven Cooperative Multi-Task Assignment in Heterogeneous Multi-Agent Pursuit-Evade Game

    https://doi.org/10.1142/S2301385024420019Cited by:0 (Source: Crossref)

    In this paper, a task assignment method is proposed to deal with the multi-agent pursuit-evade game for heterogeneous unnamed aerial vehicles via reinforcement learning. The mathematical model based on the local position error dynamics is established to describe the interactions among the vehicles in the pursuit-evade game, subject to high nonlinearities and parameter uncertainties involved in the vehicle model. The execution costs and the corresponding optimal control policies of the agent pursuing each target are calculated, and the policy with minimum execution cost is determined as the objective of the multi-agent pursuit-evade game. Min-Max strategy is introduced to estimate and counteract the interaction effects in the mathematical model, and the reinforcement learning-based algorithm is proposed to obtain the optimal solution to the assignment problem based on the Hamilton–Jacobi–Bellman equation without the interaction effects. Simulation results are given to show the effectiveness of the proposed task assignment method.

    This paper was recommended for publication in its revised form by Special Issue Editors, Junfei Xie, Yan Wan and Hao Liu.