Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Robust Control of Golf Swing Robot Using Backstepping Based on Fuzzy Sliding-Mode and Super-Twisting Backstepping Sliding-Mode Algorithms

    https://doi.org/10.1142/S2301385025500268Cited by:1 (Source: Crossref)

    This paper focuses on trajectory tracking, robustness and stabilization of a golf swing robot which has been recently developed to simulate the ultra-high-speed swing motions of a golfer. The proposed control strategies are based on the Lyapunov stability theory and include Backstepping and Sliding-Mode Control based techniques. To attenuate the chattering phenomena caused by a discontinuous switching function and improve the dynamic response of the manipulator, a fuzzy system is used in this research; a Backstepping Sliding-Mode Controller (BSMC), a Backstepping Fuzzy Sliding-Mode Controller (BFSMC) and a Super-twisting Backstepping Sliding-Mode Controller (STBSMC) are used to evaluate the proposed hybrid controller’s BFSMC performance. The Lyapunov stability theory is used to guarantee the stability of the proposed closed-loop robot technique. Numerical simulations show the effectiveness of the proposed strategy based on the fuzzy logic mechanism under different disturbances and uncertainties.

    This paper was recommended for publication in its revised form by editorial board member, Ying Tan.