World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Forecasting energy data using Singular Spectrum Analysis in the presence of outlier(s)

    https://doi.org/10.1142/S2335680414500094Cited by:6 (Source: Crossref)

    The aim of this paper is to present a comparative study on the performance of the two different forecasting approaches of SSA in the presence of outliers. We examine this issue from different points of view. As our real data set, we have considered the well known WTI Spot Price series. The effect on forecasting process when confronted with outlier(s) in different parts of a time series is evaluated. Based on this study, we find evidence which suggests that the existence of outliers affect SSA reconstruction and forecasting results, and that VSSA forecasting performs better than RSSA in terms of the accuracy and robustness of forecasts.