Who would invest only in the risk-free asset?
Abstract
Within the setup of continuous-time semimartingale financial markets, we show that a multiprior Gilboa–Schmeidler minimax expected utility maximizer forms a portfolio consisting only of the riskless asset if and only if among the investor’s priors there exists a probability measure under which all admissible wealth processes are supermartingales. Furthermore, we show that under a certain attainability condition (which is always valid in finite or complete markets) this is also equivalent to the existence of an equivalent (local) martingale measure among the investor’s priors. As an example, we generalize a no betting result due to Dow and Werlang.
The opinions expressed in the article are those of the authors and do not necessarily coincide with those of Banco de Portugal or the Eurosystem.