Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Comparison of Fused Deposition Modeling and Color Jet 3D Printing Technologies for the Printing of Mathematical Geometries

    https://doi.org/10.1142/S2424862220500104Cited by:10 (Source: Crossref)

    Many mathematical geometries act as an optimal structure for functional applications and have always been an area of interest in the research field. Their topology offers properties which are crucial and can be used effectively in various domains. Apart from that, some have a resemblance to naturally occurring compounds which can help us to study their different transformations and behavior. In this paper, we present two such geometries, first, gyroid, which is an iso-minimal surface and second a three-crossing knot, also known as trefoil knot. The structure of gyroid makes it unique and is considered suitable in developing energy-absorbing, structural and lightweight applications. Similarly, some types of knots resemble the DNA structure and have found use in molecular chemistry. This paper discusses different application areas of these geometries. Further, this paper presents modeling and printing by using fused deposition modeling (FDM) and color jet printing (CJP). Comparative analysis has been done by considering various parameters. This paper discusses the potential of these two rapid prototyping technologies and their suitability for specific printing applications.