An Automatic Registration Method for Radiation-Free Catheter Navigation Guidance
Abstract
Catheter navigation is typically based on fluoroscopy. This implies exposure to harmful radiation, lack of depth perception and limited soft-tissue contrast. Catheter navigation would benefit from guidance that makes better use of detailed pre-operatively acquired MR/CT images, while reducing radiation exposure and improving spatial awareness of the catheter pose and shape. A prerequisite for such guidance is an accurate registration between the catheter tracking system and the MR/CT scans. Existing registration methods are lengthy and cumbersome as they require a lot of user interaction. This forms a major obstacle for their adoption into clinical practice. This paper proposes a radiation-free registration method that minimizes the impact on the surgical workflow and avoids most user interaction. The method relies on catheters with embedded sensors that provide intra-operative data that can either belong to the vessel wall or to the lumen of the vessel. Based on the acquired surface and lumen points an accurate registration is computed automatically, with minimal user interaction. Validation of the proposed method is performed on a synthetic yet realistic aorta phantom. Input from electromagnetic tracking, force sensing, and intra-vascular ultrasound are used as intra-operative sensory data.
This paper was recommended for publication in its revised form by Editors Rao Gullapalli and Elena De Momi.
NOTICE: Prior to using any material contained in this paper, the users are advised to consult with the individual paper author(s) regarding the material contained in this paper, including but not limited to, their specific design(s) and recommendation(s).