World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Multiscale cohesive zone modeling and simulation of high-speed impact, penetration, and fragmentation

    https://doi.org/10.1142/S2424913018500030Cited by:2 (Source: Crossref)

    In this work, a multiscale cohesive zone model (MCZM) is developed to simulate the high-speed penetration induced dynamic fracture process such as fragmentation in crystalline solids. This model describes bulk material as a local quasi-continuum medium which follows the Cauchy–Born rule while cohesive zone element is governed by an interface depletion potential, such that the cohesive zone constitutive descriptions are genetically consistent with that of bulk element. This multiscale method proved to be effective in describing material inhomogeneities and it is constructed and implemented in a cohesive finite element Galerkin weak formulation. Numerical simulations of high-speed penetration with different shape of penetrators, i.e., square, circle and parabola nose penetrators are performed. Results show that the proposed MCZM can successfully capture spall fracture, the penetration process and different characteristics of fragmentation under different shape of penetrators.