World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Toward the Unification of Physics and Number Theory

    https://doi.org/10.1142/S2424942419500038Cited by:5 (Source: Crossref)

    This paper introduces the notion of simplex-integers and shows how, in contrast to digital numbers, they are the most powerful numerical symbols that implicitly express the information of an integer and its set theoretic substructure. A geometric analogue to the primality test is introduced: when pp is prime, it divides (pk) for all 0<k<p. The geometric form provokes a novel hypothesis about the distribution of prime-simplexes that, if solved, may lead to a proof of the Riemann hypothesis. Specifically, if a geometric algorithm predicting the number of prime simplexes within any bound n-simplex or associated An lattice is discovered, a deep understanding of the error factor of the prime number theorem would be realized — the error factor corresponding to the distribution of the non-trivial zeta zeros, which might be the mysterious link between physics and the Riemann hypothesis [D. Schumayer and D. A. W. Hutchinson, Colloquium: Physics of the Riemann hypothesis, Rev. Mod. Phys. 83 (2011) 307]. It suggests how quantum gravity and particle physicists might benefit from a simplex-integer-based quasicrystal code formalism. An argument is put forth that the unifying idea between number theory and physics is code theory, where reality is information theoretic and 3-simplex integers form physically realistic aperiodic dynamic patterns from which space, time and particles emerge from the evolution of the code syntax.