World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

On the Cosmological Transformation of Light: A Gravitational Analogue of the Photoelectric Effect

    https://doi.org/10.1142/S2424942422500050Cited by:1 (Source: Crossref)
    This article is part of the issue:

    It is known that very distant galaxies, much like our own, show remarkably high receding velocities, the magnitude of which increases with distance. Therefore, in this study, a gravitational analog of the photoelectric effect was investigated by replacing the classical (wave) theory of gravity with a gravity quanta hypothesis. The significance of this concept regarding the motion of distant galaxies is evaluated by comparing the results obtained for a photon traveling through a Planck lattice model of spacetime to the observational data for both the cosmological redshift and time dilation effects of light from distant Type Ia supernovae. The photogravity effect does not necessarily invalidate the standard big bang cosmology and may in fact add a layer of fidelity to its conclusions concerning the evolution and age of the universe.