Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Numerical Simulation of Wave Breaking Over a Submerged Step with SPH Method

    https://doi.org/10.1142/S2529807018400055Cited by:4 (Source: Crossref)
    This article is part of the issue:

    Wave breaking over a submerged step with a steep front slope and a wide horizontal platform is studied by smoothed particle hydrodynamic (SPH) method. By adding a momentum source term and a velocity attenuation term into the governing equation, a nonreflective wave maker system is introduced in the numerical model. A suitable circuit channel is specifically designed for the present SPH model to avoid the nonphysical rise of the mean water level on the horizontal platform of the submerged step. The predicted free surface elevations and the spatial distributions of wave height and wave setup over the submerged step are validated using the corresponding experimental data. In addition, the vertical distributions of wave-induced current over the submerged step are also investigated at both low and high tides.