World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Poly-Grid Spectral Element Modeling for Wave Propagation in Complex Elastic Media

    https://doi.org/10.1142/S2591728523500032Cited by:0 (Source: Crossref)

    Modeling elastic waves in complex media, with varying physical properties, require very accurate algorithms and a great computational effort to avoid nonphysical effects. Among the numerical methods the spectral elements (SEM) have a high precision and ease in modeling such problems and the physical domains can be discretized using very coarse meshes with elements of constant properties. In many cases, models with very complex geometries and small heterogeneities, shorter than the minimum wavelength, require grid resolution down to the thinnest scales, resulting in an extremely large problem size and greatly reducing accuracy and computational efficiency. In this paper, a poly-grid method (PG-CSEM) is presented that can overcome this limitation. To accurately deal with continuous variations or even small-scale fluctuations in elastic properties, temporary auxiliary grids are introduced that prevent the need to use large meshes, while at the macroscopic level wave propagation is solved maintaining the SEM accuracy and computational efficiency as confirmed by the numerical results.