Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Investigation of some finite integrals incorporating incomplete Aleph functions

    https://doi.org/10.1142/S2661335224500072Cited by:2 (Source: Crossref)
    This article is part of the issue:

    Abstract

    In this paper, we introduce a new approach to the study of finite integral formulas associated with special functions, bringing out the incomplete Aleph functions and other well-known special functions. Our method is based on the finite integral operator applied to incomplete Aleph functions. This approach makes it easier to derive integral formulas that connect the incomplete Aleph functions using well-known special functions and algebraic expressions. As a result, we can group integral formulas and special functions into different classes according to similar features. Furthermore, we can discover new integral formulas with this framework that are useful for computational applications.

    1. Introduction

    In the discipline of mathematics, special functions are vital. From time to time modifications in the approach and concepts of these functions led us to the latest form of generalized functions. Many mathematicians have done lots of remarkable work which has opened new aspects of research as well.1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21

    Kumar et al.22 derive various integral formulas involving Aleph-function multiplied with algebraic functions and special functions. After that, Bansal et al.23 deal with several finite and infinite integrals involving the family of incomplete H-functions. Furthermore, points out some known and new special cases of these integrals. Finally, we establish the integral representation of incomplete H-functions. Multivariable Aleph functions with algebraic functions, Jacobi polynomials, Legendre functions, Bessel–Maitland functions, and general class of polynomials integrals evaluated by Tadesse et al.24 Some integral formulae of incomplete I-functions involving the exponential function, the Legendre polynomials and generalized Laguerre polynomials are given by Bhatter et al.25 and Kumar et al.26 defined general definite integrals involving the product of the Aleph function and generalized incomplete hypergeometric function with general arguments.

    Here, we use a finite integral operator to derive integral formulas that combine incomplete Aleph functions with algebraic and other well-known special functions. This allows us to classify special functions and integral formulas into distinct classes with similar properties. Furthermore, this framework empowers us to create novel integral formulas that find practical applications in a wide range of areas, including science, engineering, probability distribution, electro-optics, non-linear wave propagation, electromagnetism, potential theory, electric circuits, quantum mechanics, and numerous other domains.

    2. Pre-Requisites

    In this section, we furnish significant and pivotal definitions for the functions that are employed and play a crucial role in the context of this study.

    2.1. Gamma function

    The gamma function is most straightforwardly understood as an extension of the factorial concept to encompass all real numbers. It’s defined by

    γ(S)=0TS1eTdT,S.(2.1)

    2.2. Beta function

    The beta function B(α,β), often known as Euler’s integral of first kind, plays a pivotal role in factorial calculus. In terms of the gamma function, the Beta function is expressed as follows:

    B(α,β)=10(1T)α1Tβ1dT=Γ(α)Γ(β)Γ(α+β)=B(β,α),(α,β).(2.2)

    2.3. Incomplete gamma functions

    Prym,27 introduced the incomplete gamma functions (IGFs) γ(S,Y) and Γ(S,Y) as follows :

    γ(S,Y)=Y0TS1eTdT,((S)>0;Y0)(2.3)
    and
    Γ(S,Y)=YTS1eTdT,(Y0;(S)>0whenY=0).(2.4)
    Here, γ(S,Y)+Γ(S,Y)=Γ(S), where Γ(S) is the well-known gamma function. This property is called the decomposition formula.

    2.4. Incomplete Aleph functions

    The Incomplete Aleph functions (IAFs) (γ)M,NPi,Qi,ρi;R(Z) and (Γ)M,NPi,Qi,ρi;R(Z) were introduced by Bansal et al.28 and are given as

    (Γ)M,NPi,Qi,ρi;R[Z|(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M,[ρj(𝔫ji,𝔅ji)]M+1,Qi]=12πiLφ(ζ,Y)Zζdζ,(2.5)
    where z0 and
    φ(ζ,Y)=Γ(1𝔪1𝔄1ζ,Y)Mj=1Γ(𝔫j+𝔅jζ)Nj=2×Γ(1𝔪j𝔄jζ)Ri=1ρi[Qij=M+1Γ(1𝔫ji𝔅jiζ)Pij=N+1×Γ(𝔪ji+𝔄jiζ)](2.6)
    and
    (γ)M,NPi,Qi,ρi;R[Z|(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M,[ρj(𝔫ji,𝔅ji)]M+1,Qi]=12πiLϕ(ζ,Y)Zζdζ,(2.7)
    where z0 and
    ϕ(ζ,Y)=γ(1𝔪1𝔄1ζ,Y)Mj=1Γ(𝔫j+𝔅jζ)Nj=2×Γ(1𝔪j𝔄jζ)Ri=1ρi[Qij=M+1Γ(1𝔫ji𝔅jiζ)Qij=N+1×Γ(𝔪ji+𝔄jiζ)].(2.8)
    The Incomplete Aleph functions (γ)M,NPi,Qi,ρi;R(Z) and (Γ)M,NPi,Qi,ρi;R(Z) exist for all Y0 and for more conditions (see Refs. 28,29 and 30).

    The IAFs (γ)M,NPi,Qi,ρi;R(Z) and (Γ)M,NPi,Qi,ρi;R(Z) given in (2.7) and (2.5) convert to many known special functions by substituting the specific values of parameters named as the -function introduced by Südland,31 the incomplete I-functions defined by Bansal and Kumar,32,33 the I-function introduced by Saxena,34 the incomplete H-functions introduced by Srivastava,35 the familiar Fox’s H-function.36

    This paper has five sections. Section 1 introduces Special functions. Section 2 lists the prerequisites for reading this paper. Section 3 discusses the main results and provides the necessary theorems with proofs. Section 4 presents some special cases of results, and Sec. 5 concludes the paper. Finally, the authors acknowledge the researchers and mathematicians whose work helped complete this paper.

    3. Main Results

    In this section, we evaluate several finite integrations associated with the incomplete Aleph functions and some special types of functions.

    3.1. Finite integrals associate the algebraic functions and incomplete Aleph functions

    Here, we are conducting an evaluation or analysis of the incomplete Aleph functions, specifically concerning their relationship or interactions with certain algebraic functions.

    Theorem 3.1.

    10δ𝔱(1δ)𝔱𝒦1(Γ)M,NPi,Qi,ρi;R(δZ)dδ=Γ(𝔱𝒦)(Γ)M,N+1Pi+1,Qi+1,ρi;R×[Z|(𝔱,1),(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M,(𝒦,1),[ρj(𝔫ji,𝔅ji)]M+1,Qi].(3.1)

    Proof. We can express the left-hand side of (3.1) using a Mellin–Barnes integral, and with some simplification, we obtain

    12πiLφ(ζ,Y)Zζ[10δ𝔱ζ+11(1δ)𝔱𝒦1dδ]dζ=12πiLφ(ζ,Y)Zζ[B(1𝔱ζ,𝔱𝒦)]dζ,
    the above equation can be expressed as follows:
    =12πiLΓ(1𝔪1𝔄1ζ,Y)Mj=1Γ(𝔫j+𝔅jζ)Nj=2×Γ(1𝔪j𝔄jζ)Ri=1ρi[Qij=M+1Γ(1𝔫ji𝔅jiζ)Pij=N+1×Γ(𝔪ji+𝔄jiζ)]×Γ(1𝔱ζ)Γ(𝔱𝒦)Γ(1𝒦ζ)Zζdζ,
    after a minor simplification, we achieve the desired outcome. □

    Theorem 3.2.

    10δ𝔱(1δ)𝔱𝒦1(γ)M,NPi,Qi,ρi;R(δZ)dδ=Γ(𝔱𝒦)(γ)M,N+1Pi+1,Qi+1,ρi;R×[Z|(𝔱,1),(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M,(𝒦,1),[ρj(𝔫ji,𝔅ji)]M+1,Qi].(3.2)

    Proof. To prove this theorem, follow the identical steps as those in Theorem 3.1. □

    Theorem 3.3.

    10δ𝔱1(1δ)𝒦1(Γ)M,NPi,Qi,ρi;R(δZ)dδ=Γ(𝒦)(Γ)M,N+1Pi+1,Qi+1,ρi;R×[Z|(1𝔱,1),(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M,(1𝔱𝒦,1),[ρj(𝔫ji,𝔅ji)]M+1,Qi].(3.3)

    Proof. Use the Mellin–Barnes integral form of incomplete Aleph function (Γ)M,NPi,Qi,ρi;R given in (2.6) on left-hand side of (3.3) and after a bit of simplification, we have

    12πiLφ(ζ,Y)Zζ[10δ𝔱ζ1(1δ)𝒦1dδ]dζ=12πiLφ(ζ,Y)Zζ[B(𝔱ζ,𝒦)]dζ,
    we can write the above equation as follows:
    =12πiLΓ(1𝔪1𝔄1ζ,Y)Mj=1Γ(𝔫j+𝔅jζ)Nj=2×Γ(1𝔪j𝔄jζ)Ri=1ρi[Qij=M+1Γ(1𝔫ji𝔅jiζ)Pij=N+1×Γ(𝔪ji+𝔄jiζ)]×Γ(𝔱ζ)Γ(𝒦)Γ(𝔱+𝒦ζ)Zζdζ,
    after a small simplification, we get the desired result. □

    Theorem 3.4.

    10δ𝔱1(1δ)𝒦1(γ)M,NPi,Qi,ρi;R(δZ)dδ=Γ(𝒦)(Γ)M,N+1Pi+1,Qi+1,ρi;R×[Z|(1𝔱,1),(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M,(1𝔱𝒦,1),[ρj(𝔫ji,𝔅ji)]M+1,Qi].(3.4)

    Proof. Do the same as Theorem 3.3. □

    Theorem 3.5.

    1δ𝔱(1δ)𝒦1(Γ)M,NPi,Qi,ρi;R(δZ)dδ=Γ(𝒦)(Γ)M+1,NPi+1,Qi+1,ρi;R×[Z|(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,(𝔱,1),[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔱𝒦,1),(𝔫j,𝔅j)1,M,[ρj(𝔫ji,𝔅ji)]M+1,Qi].(3.5)

    Proof. On the left-hand side of (3.5) transform incomplete Aleph function (Γ)M,NPi,Qi,ρi;R in Mellin–Barnes integral form (2.6), and after a brief simplification, we obtain

    12πiLφ(ζ,Y)Zζ[1δ𝔱ζ(δ1)𝒦1dδ]dζ,
    substituting 𝔱=𝔎+1d𝔱=d𝔎 and using formula Γ(c)Γ(e)=Γ(c+e)0xc1(x+1)(c+e)dx=Γ(c+e)0xe1(x+1)(c+e)dx. We get
    =12πiLφ(ζ,Y)Zζ×[0𝔎𝒦1(1+𝔎)(𝒦+𝔱+ζ𝒦)d𝔎]dζ,
    we can write the above equation as
    =12πiLΓ(1𝔪1𝔄1ζ,Y)Mj=1Γ(𝔫j+𝔅jζ)Nj=2×Γ(1𝔪j𝔄jζ)Ri=1ρi[Qij=M+1Γ(1𝔫ji𝔅jiζ)Pij=N+1×Γ(𝔪ji+𝔄jiζ)]×Γ(𝔱+ζ𝒦)Γ(𝒦)Γ(𝔱+ζ)Zζdζ,
    after a small simplification, we get the desired result. □

    Theorem 3.6.

    1δ𝔱(1δ)𝒦1(γ)M,NPi,Qi,ρi;R(δZ)dδ=Γ(𝒦)(γ)M+1,NPi+1,Qi+1,ρi;R×[Z|(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,(𝔱,1),[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔱𝒦,1),(𝔫j,𝔅j)1,M,[ρj(𝔫ji,𝔅ji)]M+1,Qi].(3.6)

    Proof. Do the same as Theorem 3.5. □

    Theorem 3.7.

    0δ𝔱1(δ+b)𝒦(Γ)M,NPi,Qi,ρi;R(δZ)dδ=b𝔱𝒦Γ(𝒦)(Γ)M+1,N+1Pi+1,Qi+1,ρi;R×[Zb|(1𝔱,1),(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M,(𝔱𝒦,1),[ρj(𝔫ji,𝔅ji)]M+1,Qi].(3.7)

    Proof. Use the Mellin–Barnes integral form of incomplete Aleph function (Γ)M,NPi,Qi,ρi;R given in (2.6) on left-hand side of (3.7) and after a bit of simplification, we have

    12πiLφ(ζ,Y)Zζb𝒦[0δ𝔱ζ1(δb+1)𝒦dδ]dζ,
    substituting δ=𝔎bdδ=bd𝔎. We get
    =12πib𝔱𝒦Lφ(ζ,Y)(Zb)ζ×[0𝔎𝔱ζ1(1+𝔎)(𝒦𝔱+ζ+𝔱ζ)d𝔎]dζ,
    we can write the above equation as
    =12πib𝔱+𝒦LΓ(1𝔪1𝔄1ζ,Y)Mj=1Γ(𝔫j+𝔅jζ)×Nj=2Γ(1𝔪j𝔄jζ)Ri=1ρi[Qij=M+1Γ(1𝔫ji𝔅jiζ)×Pij=N+1Γ(𝔪ji+𝔄jiζ)]×Γ(𝔱ζ)Γ(𝒦𝔱+ζ)Γ(𝒦)(Zb)ζdζ,
    we obtain the intended outcome by making a modest simplification. □

    Theorem 3.8.

    0δ𝔱1(δ+b)𝒦(γ)M,NPi,Qi,ρi;R(δZ)dδ=b𝔱𝒦Γ(𝒦)(γ)M+1,N+1Pi+1,Qi+1,ρi;R×[Zb|(1𝔱,1),(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M,(𝔱𝒦,1),[ρj(𝔫ji,𝔅ji)]M+1,Qi].(3.8)

    Proof. To establish the validity of this theorem, follow the identical steps as outlined in Theorem 3.7. □

    Theorem 3.9.

    11(1δ)𝔱(1+δ)𝒦(Γ)M,NPi,Qi,ρi;R[Z(1δ)ν]dδ=2𝔱+𝒦+1Γ(1+𝒦)(Γ)M+1,N+1Pi+1,Qi+1,ρi;R×[2νZ|(𝔱,ν),(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M,(1𝔱𝒦,ν),[ρj(𝔫ji,𝔅ji)]M+1,Qi].(3.9)

    Proof. On the left-hand side of (3.9) transform incomplete Aleph function (Γ)M,NPi,Qi,ρi;R in Mellin–Barnes integral form (2.6), and after a brief simplification, we obtain

    12πiLφ(ζ,Y)Zζ×[11(1δ)1+𝔱νζ1(1+δ)1+𝒦1dδ]dζ.
    By using the formula given in Ref. 37, p. 261 as follows:
    11(1y)m+a(1+y)m+bdy=22m+a+b+1B(1+a+m,1+b+m),(3.10)
    we can write the above equation as
    =12πi2𝔱+𝒦+1LΓ(1𝔪1𝔄1ζ,Y)Mj=1Γ(𝔫j+𝔅jζ)×Nj=2Γ(1𝔪j𝔄jζ)Ri=1ρi[Qij=M+1Γ(1𝔫ji𝔅jiζ)×Pij=N+1Γ(𝔪ji+𝔄jiζ)]×Γ(1+𝒦)Γ(1+𝔱νζ)Γ(2+𝒦+𝔱νζ)(2νZ)ζdζ,
    we get the intended outcome by making a modest change. □

    Theorem 3.10.

    11(1δ)𝔱(1+δ)𝒦(γ)M,NPi,Qi,ρi;R[Z(1δ)ν]dδ=2𝔱+𝒦+1Γ(1+𝒦)(γ)M+1,N+1Pi+1,Qi+1,ρi;R×[2νZ|(𝔱,ν),(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M,(1𝔱𝒦,ν),[ρj(𝔫ji,𝔅ji)]M+1,Qi].(3.11)

    Proof. Follow the same steps as followed in Theorem 3.9. □

    3.2. Finite integrals associate the Jacobi polynomials and incomplete Aleph functions

    Jacobi polynomial P(α,β)m(x)37 is given as

    P(α,β)m(y)=(1+α)mm!2F1[m,1+α+β+m;1+α;1y2],(3.12)
    where 2F1 is a well-known hyper-geometric function. For α=0,β=0, Jacobi polynomial (3.12) converts to Legendre polynomial (see Ref. 37, p. 257). For y=1, P(α,β)m(y)=(1+α)mm!.

    This section is dedicated to deriving integral formulas that incorporate incomplete Alpha functions with Jacobi polynomials.

    Theorem 3.11. If α>1,β>1,(Λ)>1 and |argZ|<πΩ2 then a integral representation with the incomplete Aleph function (Γ)M,NPi,Qi,ρi;R and the Jacobi polynomials is as follows:

    11δΛ(1δ)α(1+δ)P(α,β)n(δ)(Γ)M,NPi,Qi,ρi;R×[Z(1+δ)μ]dδ=(1)n2α++1Γ(α+n+1)n!k=0(Λ)k(1)kk!×(Γ)M,N+2Pi+2,Qi+2,ρi;R[2μZ|AB],(3.13)
    where A=(βk,μ),(k,μ),(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi and B=(𝔫j,𝔅j)1,M,(βnk,μ),(1αnk,μ),[ρj(𝔫ji,𝔅ji)]M+1,Qi.

    Proof. Use the Mellin–Barnes integral representation of incomplete Alpeh function (Γ)M,NPi,Qi,ρi;R on the left-hand side of (3.13) and after a bit of simplification, we have

    12πiLφ(ζ,Y)Zζ[11δΛ(1δ)α(1+δ)μζ×P(α,β)n(δ)dδ]dζ.
    Now using the formula
    11δΛ(1δ)α(1+δ)P(α,β)n(δ)dδ=(1)n2α++1Γ(α+n+1)Γ(+1)Γ(β++1)n!Γ(β++n+1)Γ(α++n+2)×3F2[Λ,+β+1,+1;+β+n+1,+α+n+2;1],(3.14)
    here 3F2 is a special case of generalized hypergeometric function.

    Hence

    12πiLφ(ζ,Y)Zζ(1)n2α+μζ+1Γ(α+n+1)Γ(μζ+1)Γ(β+μζ+1)n!Γ(β+μζ+n+1)Γ(α+μζ+n+2)×3F2[Λ,μζ+β+1,μζ+1;μζ+β+n+1,μζ+α+n+2;1]dζ
    =(1)n2α++1Γ(α+n+1)n!k=0(Λ)k(1)kk!12πi×LΓ(1𝔪1𝔄1ζ,Y)Mj=1Γ(𝔫j+𝔅jζ)Nj=2×Γ(1𝔪j𝔄jζ)Ri=1ρi[Qij=M+1Γ(1𝔫ji𝔅jiζ)Pij=N+1×Γ(𝔪ji+𝔄jiζ)]×Γ(μζ+β+k+1)Γ(μζ+k+1)Γ(μζ+β+n+k+1)×Γ(μζ+α+n+k+2)(2μZ)ζ,
    we get the intended outcome by making a modest change. □

    Theorem 3.12. If α>1, β>1, (Λ)>1 and |argZ|<πΩ2 then an integral representation with the incomplete Aleph function (Γ)M,NPi,Qi,ρi;R and the Jacobi polynomials is as follows:

    11δΛ(1δ)α(1+δ)P(α,β)n(δ)(γ)M,NPi,Qi,ρi;R×[Z(1+δ)μ]dδ=(1)n2α++1Γ(α+n+1)n!k=0(Λ)k(1)kk!×(γ)M,N+2Pi+2,Qi+2,ρi;R[2μZ|AB],(3.15)
    where A=(βk,μ),(k,μ),(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi and B=(𝔫j,𝔅j)1,M,(βnk,μ),(1αnk,μ),[ρj(𝔫ji,𝔅ji)]M+1,Qi.

    Proof. Do this as done in Theorem 4.1. □

    Theorem 3.13.

    11(1δ)α(1+δ)P(κ,)m(δ)P(ω,τ)n(δ)(Γ)M,NPi,Qi,ρi;R×[Z(1δ)μ]dδ=2+α+1Γ(1+ω+m)Γ(κ+n+1)m!n!×k=0Γ(1+)(1+ω+τ+m)k×(1+κ++n)k(m)k(n)kΓ(1+ω+k)Γ(1+κ+k)(k!)2×(Γ)M,N+1Pi+1,Qi+1,ρi;R×[2μZ|(α2k,μ),(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M,(1α2k,μ),[ρj(𝔫ji,𝔅ji)]M+1,Qi],(3.16)
    provided α>0,()>1 and |argZ|<πΩ2.

    Proof. The left-hand side of (3.16) can be written as

    12πiLφ(ζ,Y)Zζ×[11(1δ)αμζ(1+δ)P(κ,)m(δ)P(ω,τ)n(δ)dδ]dζ.
    Now using the formula given in (3.12), we obtain
    =(1+ω)mm!k=0(1+ω+τ+m)k(m)k(1+ω)k2kk!×12πiLφ(ζ,Y)Zζ×[11(1δ)αμζ+k(1+δ)(δ)P(ω,τ)n(δ)dδ]dζ.(3.17)
    Again using (3.12) in (3.17), we have
    =ΓΓ(1+κ+n)(1+ω+m)Γ(1+κ)m!n!×k=0(1+ω+τ+m)k(1+κ++n)k(m)k(n)kΓ(1+ω+k)Γ(1+κ+k)22k(k!)2×12πiLφ(ζ,Y)Zζ2μζ×[11(1δ)αμζ+2k(1+δ)dδ]dζ.(3.18)
    using (3.10) in (3.18), we get
    =2α++1Γ(1+κ+n)Γ(1+ω+m)m!n!×k=0(1+κ++n)k(1+ω+τ+m)k(m)k(n)kΓ(1+ω+k)Γ(1+κ+k)(k!)2×12πiLφ(ζ,Y)Zζ2μζ×[Γ(1+αμζ+2k)Γ(1+)Γ(2+αμζ+2k+)]dζ,
    we get the intended outcome by making a modest change. □

    Theorem 3.14.

    11(1δ)α(1+δ)P(κ,)m(δ)P(ω,τ)n(δ)(γ)M,NPi,Qi,ρi;R×[Z(1δ)μ]dδ=2+α+1Γ(1+ω+m)Γ(κ+n+1)m!n!×k=0Γ(1+)(1+κ++n)k×(1+ω+τ+m)k(m)k(n)kΓ(1+κ+k)Γ(1+ω+k)(k!)2×(γ)M,N+1Pi+1,Qi+1,ρi;R×[2μZ|(α2k,μ),(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M,(1α2k,μ),[ρj(𝔫ji,𝔅ji)]M+1,Qi],(3.19)
    provided α>0,()>1 and |argZ|<πΩ2.

    Proof. Do this as done in Theorem 4.3. □

    Theorem 3.15. If (κ)>1, ()>1 and |argZ|<πΩ2 then the following integral equation holds:

    11(1δ)ω(1+δ)τP(κ,)n(δ)(Γ)M,NPi,Qi,ρi;R×[Z(1δ)μ(1+δ)β]dδ=2ω+τ+1(κ+1)nn!k=0(n)k(1+κ++n)kk!(1+κ)k×(Γ)M,N+2Pi+2,Qi+2,ρi;R[2μ+βZ|CD],(3.20)
    where C=(ωk,μ),(τ,β),(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi and D=(𝔫j,𝔅j)1,M,(1ωτk,μ+β),[ρj(𝔫ji,𝔅ji)]M+1,Qi.

    Proof. The left-hand side of (3.20) can be written as a Mellin–Barnes integral. After some simplification, this becomes

    12πiLφ(ζ,Y)Zζ[11(1δ)ω(1+δ)τP(κ,)n(δ)×(1δ)μζ(1+δ)βζdδ]dζ=12πiLφ(ζ,Y)Zζ(11(1δ)ωμζ(1+δ)τβζ×(1+κ)nn!2F1[n,1+κ++n;1+κ;1δ2]dδ)dζ=(1+κ)nn!k=0(n)k(1+κ++n)k2kk!(1+κ)k×12πiLφ(ζ,Y)Zζ[11(1δ)ωμζ+k+11×(1+δ)τβζ+11(δ)dδ]dζ.(3.21)
    By using (3.10) in (3.21), we arrive at
    =2ω+τ+1(1+κ)nn!k=0(1+κ++n)k(n)k(1+κ)kk!×12πiLΓ(1𝔪1𝔄1ζ,Y)Mj=1Γ(𝔫j+𝔅jζ)×Nj=2Γ(1𝔪j𝔄jζ)Ri=1ρi[Qij=M+1Γ(1𝔫ji𝔅jiζ)×Pij=N+1Γ(𝔪ji+𝔄jiζ)]×[Γ(1+ωμζ+k)Γ(1+τβζ)Γ(2+ω+τμζβζ+k)](2μ+βZ)ζdζ.(3.22)
    After a few simple steps, we arrive at the desired result. □

    Theorem 3.16.

    11(1δ)a(1+δ)τP(κ,)n(δ)(γ)M,NPi,Qi,ρi;R×[Z(1δ)μ(1+δ)β]dδ=2ω+τ+1(κ+1)nn!k=0(n)k(1+κ++n)kk!(1+κ)k×(γ)M,N+2Pi+2,Qi+2,ρi;R×[2μ+βZ|(ωk,μ),(τ,β),(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M,(1ωτk,μ+β),[ρj(𝔫ji,𝔅ji)]M+1,Qi],(3.23)
    provided (κ)>1, ()>1 and |argZ|<πΩ2.

    Proof. To prove this theorem, use the same approach as in the proof of Theorem 4.5. □

    Theorem 3.17.

    11(1δ)ω(1+δ)τP(c,d)n(δ)(Γ)M,NPi,Qi,ρi;R×[Z(1+δ)μ]dδ=2ω+τ+1(1+c)nn!×k=0Γ(1+ω+k)(1+c+d+n)k(n)k(1+c)kk!×(Γ)M+1,NPi+1,Qi+1,ρi;R×[2μZ|(𝔪1,𝔄1,Y),(1+ω,μ),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(2+ω+τ+k,μ),(𝔫j,𝔅j)1,M,[ρj(𝔫ji,𝔅ji)]M+1,Qi],(3.24)
    provided (c)>1, (d)>1, |argZ|<πΩ2 and [ω+μmin

    Proof. We can express the left-hand side of (3.24) in the form of Mellin–Barnes integral, and following some simplification, we obtain

    =(1+c)nn!k=0(n)k(1+c+d+n)k2kk!(1+c)k12πiLφ(ζ,Y)×Zζ11(1δ)ω+k1+1(1+δ)τ+μζ1+1dδdζ.(3.25)
    By using (3.10) in (3.25), we arrive at
    =2ω+τ+1(1+c)nn!×k=0Γ(1+ω+k)(1+c+d+n)k(n)k(1+c)kk!×12πiLφ(ζ,Y)ZζΓ(1+ω+k)Γ(1+τ+μζ)Γ(2+ω+τ+μζ+k)×(2μZ)ζdζ.
    We can simplify the equation and arrive at the desired result. □

    Theorem 3.18.

    11(1δ)ω(1+δ)τPn(c,d)(δ)(γ)Pi,Qi,ρi;RM,N[Z(1+δ)μ]dδ=2ω+τ+1(1+c)nn!×k=0Γ(1+ω+k)(1+c+d+n)k(n)k(1+c)kk!×(γ)Pi+1,Qi+1,ρi;RM+1,N×2μZ(𝔪1,𝔄1,Y),(1+ω,μ),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(2+ω+τ+k,μ),(𝔫j,𝔅j)1,M,[ρj(𝔫ji,𝔅ji)]M+1,Qi,(3.26)
    provided (c)>1, (d)>1, |argZ|<πΩ2 and [ω+μmin(𝔢𝔧dj)]>1(j=1,M¯).

    Proof. Do the same as in Theorem 4.7. □

    Theorem 3.19.

    11(1δ)ω(1+δ)τPn(c,d)(δ)(Γ)Pi,Qi,ρi;RM,N×[Z(1δ)μ(1+δ)β]dδ=2ω+τ+1(1+c)nn!k=0(1+c+d+n)k(n)k(1+c)kk!×(Γ)Pi+1,Qi+1,ρi;RM+1,N+2×2μβZ(ωk,μ),(𝔪1,𝔄1,Y),(1+ω,μ),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M(1ωτk,μβ),(1+τ,μ),[ρj(𝔫ji,𝔅ji)]M+1,Qi,(3.27)
    provided |argZ|<πΩ2, [ω+μmin(𝔢𝔧dj)]>1 and [τ+βmin(𝔢𝔧dj)]>1(j=1,M¯).

    Proof. To prove this theorem follow the same steps as in Theorem 4.7. □

    3.3. Finite integrals associate the Legendre function and incomplete Aleph functions

    The Legendre’s differential equation (see Sec 3.1 of Ref. 38) can be written as

    (1x2)d2fdx22xdfdx+[a(a+1)b2(1x2)1]f=0,(3.28)
    where x,a,b are unrestricted. It is the Legendre function.

    If we put f=(x21)12ba, we can write (3.28) as

    (1x2)d2adx22(b+1)xdadx+[a(ba)(b+a+1)]=0
    and with D=12z2 as an independent variable, the above equation reduces to
    D(1D)d2adD2+(b+1)(12D)dadD+[a(ab)(b+a+1)]=0.
    Solution of Legendre’s differential equation (3.28) in terms of Gauss hypergeometric equation with α=ba, β=b+a+1 and γ=b+1, is as follows:
    f=Pab(x)=1Γ(1b)x+1x112b×2F1[a,a+1;1b;12x2],|1x|<2,
    where Legendre function of first kind38 representing by Pab(x).

    Now, evaluate the main findings of this section by using Legendre functions.

    Theorem 3.20.

    01δτ1(1δ2)κ2Pκ(δ)(Γ)Pi,Qi,ρi;RM,N[Zδω]dδ=(1)κ2ωτπ12Γ(1+κ+)Γ(1κ+)(Γ)Pi+1,Qi+2,ρi;RM+1,N×2κZAB,(3.29)
    provided τ>0, |argZ|<πΩ2 and κ0. where A=(1τ,ω),(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi and B=(𝔫j,𝔅j)1,M,(12κ2+2τ2,ω2),(κ22τ2,ω2),[ρj(𝔫ji,𝔅ji)]M+1,Qi.

    Proof. The left-hand side of (3.29) can be expressed as Mellin–Barnes integral. After some simplification, we obtain

    12πiLφ(ζ,Y)Zζ01δτωζ1(1δ2)κ2Pκ(δ)dδdζ.(3.30)
    Now, using formula (see Sec 3.12 of Ref. 38) for (τ)>0, κ as follows:
    01δτ(1δ2)κ2Pκ(δ)dδ=(1)κ2τκπ12Γ(τ)Γ(1+κ+)Γ(1κ+)Γ(12+κ22+τ2)Γ(12+κ2+2+τ2).
    Then, the integral (3.30) becomes
    (1)κ2τκπ12Γ(1+κ+)Γ(1κ+)12πiLφ(ζ,Y)×Γ(τωζ)Γ(1+τωζ+κ)2)Γ(1+τωζ+κ+)2)(2κZ)ζdζ.
    Now simplifying the equation, we get the desired result. □

    Theorem 3.21.

    01δτ1(1δ2)κ2Pκ(δ)(γ)Pi,Qi,ρi;RM,N[Zδω]dδ=(1)κ2ωτπ12Γ(1+κ+)Γ(1κ+)(γ)Pi+1,Qi+2,ρi;RM+1,N×2κZAB,(3.31)
    provided τ>0, |argZ|<πΩ2 and κ0. where A=(1τ,ω),(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi and B=(𝔫j,𝔅j)1,M,(12κ2+2τ2,ω2),(κ22τ2,ω2),[ρj(𝔫ji,𝔅ji)]M+1,Qi.

    Proof. To prove it, do the same as in Theorem 5.1. □

    3.4. Finite integrals associate the hypergeometric function and incomplete Aleph functions

    The hypergeometric function 2F1 is defined by

    2F1(α,β;γ;x)=1+n=0(α)n(β)n(γ)nxnn!,(3.32)
    where (α)n,(β)n and (γ)n are Pochhammer symbols given as
    (μ)λ=Γ(μ+λ)Γ(μ)=1ifλ=0;μ{0},(μ)(μ+1)(μ+n1)ifλ=n;μ.(3.33)

    Theorem 3.22.

    1δω(δ1)τ12F1[τ+ω,Λ+τω;τ;(1δ)]×(Γ)Pi,Qi,ρi;RM,N[Zδ]dδ=Γ(τ+k)k=0(1)k(+τω)k(Λ+τω)kk!(τ)k×(Γ)Pi+1,Qi+2,ρi;RM+1,N×Z(𝔪1,𝔄1,Y),(ω,1),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(ωτk,1),(𝔫j,𝔅j)1,M,[ρj(𝔫ji,𝔅ji)]M+1,Qi,(3.34)
    which provided |argZ|<πΩ2.

    Proof. Now write left-hand side of (3.34) in the form of Mellin–Barnes integral and after simplification, we have

    =12πiLφ(ζ,Y)Zζ1δωζ(δ1)τ1(1+κ)nn!×2F1τ+ω,Λ+τω;τ;(1δ)dδdζ.
    Now putting δ=t+1dδ=dt, we obtain
    k=0(1)k(+τω)k(Λ+τω)kk!(τ)k12πi×LΓ(τ+k)Γ(ω+ζτk)Γ(ω+ζ)φ(ζ,Y)Zζdζ,
    after a small simplification, we get the desired result. □

    Theorem 3.23.

    1δω(δ1)τ12F1[τ+ω,Λ+τω;τ;(1δ)]×(γ)Pi,Qi,ρi;RM,N[Zδ]dδ=Γ(τ+k)k=0(1)k(+τω)k(Λ+τω)kk!(τ)k×(γ)Pi+1,Qi+2,ρi;RM+1,N×Z(𝔪1,𝔄1,Y),(ω,1),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(ωτk,1),(𝔫j,𝔅j)1,M,[ρj(𝔫ji,𝔅ji)]M+1,Qi,(3.35)
    which provided |argZ|<πΩ2.

    Proof. To prove this theorem, do this as in Theorem 6.2. □

    3.5. Finite integrals associate the Bessel Maitland function andincomplete Aleph functions

    The Bessel Maitland function is a generalization of the Bessel function. It is also known as Wright generalized Bessel function and is defined by

    Jβα(x)=ϕ(α,β+1:x)=n=01Γ(αn+β+1)(xn)n!.(3.36)
    Now, we establish the following integral that associates the incomplete Aleph functions with the Bessel Maitland function.

    Theorem 3.24.

    0δωJκ(δ)(Γ)Pi,Qi,ρi;RM,N[Zδτ]dδ=(Γ)Pi+2,Qi,ρi;RM,N+1×.Z(ω,τ),(1+κκω,κτ),(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M,[ρj(𝔫ji,𝔅ji)]M+1,Qi,(3.37)
    which provided |argZ|<πΩ2, τκτ>0, τ>0, 0<κ<1 and (ω+1)>0.

    Proof. Here, we can write the left-hand side of (3.37) in the form of Mellin–Barnes integral and after simplification, we get

    12πiLφ(ζ,Y)Zζ0δωτζJκ(δ)dδdζ.
    Use a formula given in Ref. 39 defined as
    0xtJβα(x)dx=Γ(t+1)Γ(1+βααt)((t)>1,0<α<1),
    then we arrive at
    12πiLφ(ζ,Y)Γ(1+ωτζ)Γ(1+κκω+κτζ)Zζdζ,
    after a small simplification, we get the desired result. □

    Theorem 3.25.

    0δωJκ(δ)(γ)Pi,Qi,ρi;RM,N[Zδτ]dδ=(γ)Pi+2,Qi,ρi;RM,N+1×Z(ω,τ),(1+κκω,κτ),(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M,[ρj(𝔫ji,𝔅ji)]M+1,Qi,(3.38)
    which provided |argZ|<πΩ2, τκτ>0, τ>0, 0<κ<1 and (ω+1)>0.

    Proof. To prove this, do the same as in Theorem 7.1. □

    3.6. Finite integrals associate general class of polynomials and incomplete Aleph functions

    Srivastava (see Eq. (7) on p. 185 of Ref. 40) introduced the general class of polynomials Sb1,b2,,bna1,a2,,an(x) and defined and represented it as follows :

    Sb1,b2,,bna1,a2,,an(x)=k1=0b1a1kn=0bnani=1n(bi)aikiki!Abi,kixki,(3.39)
    where b1,,bn are non-negative integers, a1,,an are arbitrary positive integers, and the coefficients Abi,ki (where bi and ki are both greater than or equal to 0) can be real or complex. By appropriately configuring the coefficients represented as Abi,ki, the function Sb1,b2,,bna1,a2,,an(x) can encompass various well-established polynomials as specific instances. These notable instances encompass Laguerre Polynomials, Hermite Polynomials, Bessel Polynomials, Jacobi Polynomials, and other well-known cases detailed in Ref. 41, pp. 158–161. Now, we define the following integral that connects the incomplete Aleph function to this wide range of polynomials.

    Theorem 3.26.

    11(1δ)ω1(1+δ)τ1Sb1,b2,,bna1,a2,,an×[y(1δ)κ(1+δ)](Γ)Pi,Qi,ρi;RM,N×[Z(1δ)β(1+δ)p]dδ2ω+τ1k1=0b1a1kn=0bnan×i=1n(bi)aikiki!Abi,kiyki2(κ+)ki(Γ)Pi+2,Qi+1,ρi;RM,N+2×Z2(β+i)(1ωκki,β),(1τki,p),(𝔪1,𝔄1,Y),(𝔪j,𝔄j)2,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M,(1ωτ(κ+)ki,β+p),[ρj(𝔫ji,𝔅ji)]M+1,Qi,(3.40)
    which converges under the conditions |argZ|<πΩ2, ω1, τ1, κ0, 0, β0, p0 (here, h and p are not simultaneous zerosand (ω)+βmin[(𝔫j𝔅j)]>0 and (τ)+pmin[(𝔫j𝔅j)]>0.

    Proof. Utilizing Eqs. (2.5) and (8.1), and exchanging the sequence of summations and integration, we attain the anticipated outcome. □

    4. Special Cases

    In this section, our objective is to delve into a thorough evaluation of specific scenarios and circumstances that have emerged as a consequence of the results and Ref. 22. We have derived:

    Case 1. If we replace a by η1 and put Y=κ==ω=τ=0, then formula (3.16) transforms into the following integral that incorporates the product of the Legendre function and the Aleph function:

    11(1δ)η1Pm(0,0)(δ)Pn(0,0)(δ)Pi,Qi,ρi;RM,N[Z(1δ)μ]dδ=2ηk=0(m)k(n)k(1+m)k(1+n)k(k!)2Γ(1+k)Γ(1+k)×Pi+1,Qi+1,ρi;RM,N+1×2μZ(η12k,μ),(𝔪j,𝔄j)1,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M,(2η2k,μ),[ρj(𝔫ji,𝔅ji)]M+1,Qi,(4.1)
    provided |argZ|<πΩ2.

    Case 2. If we put ω by ω1 and τ by τ1, and put Y=κ==0, then formula (3.20) transforms into the following integral that incorporates the product of the Legendre function and the Aleph function:

    11(1δ)ω1(1+δ)τ1Pn(0,0)(δ)Pi,Qi,ρi;RM,N×[Z(1δ)μ(1+δ)β]dδ=2ω+τ1k=0(n)k(1+n)kk!Pi+2,Qi+2,ρi;RM,N+2×2μ+βZ(1ωk,μ),(1τ,β),(𝔪j,𝔄j)1,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M,(1ωτk,μ+β),[ρj(𝔫ji,𝔅ji)]M+1,Qi,(4.2)
    provided |argZ|<πΩ2.

    Case 3. By replacing ω by ω1 and τ by τ1, and put Y=c=d=0, then integral (3.27) takes the following form:

    11(1δ)ω1(1+δ)τ1Pn(0,0)(δ)Pi,Qi,ρi;RM,N×[Z(1δ)μ(1+δ)β]dδ=2ω+τ1k=0(n)k(1+n)k(k!)2Pi+1,Qi+1,ρi;RM+1,N+2×2μβZ(1+ωk,μ),(1ω,μ),(𝔪j,𝔄j)1,N,[ρj(𝔪ji,𝔄ji)]N+1,Pi(𝔫j,𝔅j)1,M,(1ωτk,μβ),(τ,μ),[ρj(𝔫ji,𝔅ji)]M+1,Qi,(4.3)
    provided |argZ|<πΩ2, [ω+μmin(𝔢𝔧dj)]>1 and [τ+βmin(𝔢𝔧dj)]>1(j=1,M¯).

    5. Conclusion

    The results derived in this context have fundamental significance and are expected to have practical uses in the analysis of both single-and multi-variable hyper-geometric series. These series have utility in diverse fields such as statistical mechanics, electrical networks, and probability theory. Moreover, all of the aforementioned results can be expressed in terms of incomplete H-functions, incomplete I-functions, I-function, and H-function.

    Availability of Statistics and Materials

    The availability of materials is already cited in the paper.

    Funding Information

    No funding available.

    Statement of Disagreement

    According to researchers, there are no conflicts of interest to disclose about the paper that is being presented.

    Author’s Contribution

    The study was directed by Ravi Shanker Dubey, who also analyzed the findings. Sachin Kumar organized the necessary research materials while Manvendra Narayan Mishra and Rahul Sharma prepared the paper and performed all the mathematical computations. The draft was read, corrected, and polished by all authors.