World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Computing Protein pKas Using the TABI Poisson–Boltzmann Solver

    https://doi.org/10.1142/S2737416520420065Cited by:8 (Source: Crossref)
    This article is part of the issue:

    A common approach to computing protein pKas uses a continuum dielectric model in which the protein is a low dielectric medium with embedded atomic point charges, the solvent is a high dielectric medium with a Boltzmann distribution of ionic charges, and the pKa is related to the electrostatic free energy which is obtained by solving the Poisson–Boltzmann equation. Starting from the model pKa for a titrating residue, the method obtains the intrinsic pKa and then computes the protonation probability for a given pH including site–site interactions. This approach assumes that acid dissociation does not affect protein conformation aside from adding or deleting charges at titratable sites. In this work, we demonstrate our treecode-accelerated boundary integral (TABI) solver for the relevant electrostatic calculations. The pKa computing procedure is enclosed in a convenient Python wrapper which is publicly available at the corresponding author’s website. Predicted results are compared with experimental pKas for several proteins. Among ongoing efforts to improve protein pKa calculations, the advantage of TABI is that it reduces the numerical errors in the electrostatic calculations so that attention can be focused on modeling assumptions.

    Remember to check out the Most Cited Articles!

    Check out our Chemistry New Titles