Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

An Ensemble Approach for Prioritizing Antivirals Against COVID-19 via Heterogeneous Network Inference-Based Inductive Matrix Completion

    https://doi.org/10.1142/S2737416523410041Cited by:3 (Source: Crossref)
    This article is part of the issue:

    The global spread of COVID-19 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan in December 2019, created a massive health crisis, and disrupted the world economy. Much research has been conducted to discover drugs, develop vaccines, and find repurposable drugs against the disease. Computational drug repurposing, the process of determining new uses for approved drugs through computational techniques, becomes an effective solution to fight the COVID-19 pandemic. This study aims to investigate and prioritize potential drugs against SARS-CoV-2 through an integrated network-based approach. We propose an ensemble approach based on network inference and inductive matrix completion (NIMCVDA) for virus–drug association prediction to identify antivirals against COVID-19. We constructed a heterogeneous drug–virus network using intra-similarities of virus genomic sequences and drug chemical structures and existing associations between viruses and drugs. A network inference method is used to infer missing drug–virus edges. Based on this, existing drug–virus association matrix is reconstructed. Finally, more accurate association scores between drugs and viruses are computed using the inductive matrix completion algorithm. The proposed method achieved an AUC of 0.9020 on five-fold cross-validation and 0.8786 on leave-one-out cross-validation. We compared the performance of the model with related approaches. In addition, we carried out case studies on the top-predicted drugs and implemented our model with other datasets to verify prediction performance. Our work prioritized repurposable drugs to battle with COVID-19 epidemic. The cross-validation results and case studies illustrate that the top-predicted drugs are strong candidates for further biological tests.