World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The Lattice Molecular Automaton(LMA): A Simulation System for Constructive Molecular Dynamics

    https://doi.org/10.1142/S0129183198000133Cited by:11 (Source: Crossref)

    Molecular self-assembly is frequently encountered in biochemical systems generating higher order structures with well-defined functionalities. However, the driving forces underlying these processes are not well understood.

    The Lattice Molecular Automaton (LMA) is a deterministic computational tool suitable for simulation of self-organization processes in large scale, molecular systems. This paper introduces the basic computational concepts needed to formulate molecular dynamics and self-assembly in a discrete field, cellular automaton environment: Molecular objects are encoded as data structures on a 2D triangular lattice. Propagating force particles together with kinetic and potential energy terms define simulation objects that specify molecular dynamics and force field properties. As an example, the simulation of polymer dynamics in an aqueous environment is shown.

    In this paper we focus on the mathematical and algorithmic formulation of a variety of intra- and intermolecular interactions. Thermodynamical characteristics together with a variety of other physico-chemical properties of the LMA are discussed in detail in Ref. 1.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!