World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

GENECFE-ANFIS: A NEURO-FUZZY INFERENCE SYSTEM TO INFER GENE-GENE INTERACTIONS BASED ON RECOGNITION OF MICROARRAY GENE EXPRESSION PATTERNS

    https://doi.org/10.4015/S1016237207000112Cited by:3 (Source: Crossref)

    A neuro-fuzzy inference system that recognizes the expression patterns of genes in microarray gene expression (MGE) data, called GeneCFE-ANFIS, is proposed to infer gene interactions. In this study, three primary features are utilized to extract genes' expression patterns and used as inputs to the neuro-fuzzy inference system. The proposed algorithm learns expression patterns from the known genetic interactions, such as the interactions confirmed by qRT-PCR experiments or collected through text-mining technique by surveying previously published literatures, and then predicts other gene interactions according to the learned patterns. The proposed neuro-fuzzy inference system was applied to a public yeast MGE dataset. Two simulations were conducted and checked against 112 pairs of qRT-PCR confirmed gene interactions and 77 TFs (Transcriptional Factors) pairs collected from literature respectively to evaluate the performance of the proposed algorithm.