World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THE BEHAVIOR OF RAT TOOTH GERM CELLS ON 3-HYDROXYL-BUTYRATE-CO-3-HYDROXY-HEXANOATE (PHBHHx) MEMBRANES

    https://doi.org/10.4015/S1016237207000379Cited by:0 (Source: Crossref)

    Copolymers of 3-hydroxyvalerate (HV) and 3-hydroxyhexanoate (HHx) membranes are a new family of biomaterials for tissue engineering applications. The object of this study is to investigate the behavior of rat tooth germ cells on various 3-hydroxyl-butyrate-co-3-hydroxy-hexanoate (PHBHHx) membranes. In this study, PHBHHx membranes from three thin-film processes were used. PHBHHx membranes with different surface morphologies were prepared by phase inversion, electrospinning, and hot pressing. The morphologies of the PHBHHx membranes were investigated by scanning electron microscopy (SEM). Tooth germ cells were isolated from four-day-old Wistar rats. The cellular adhesion, proliferation and viability were determined by SEM, BrdU (5-bromo-2-deoxyuridine) and MTT (3-[4, 5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; Thiazolyl blue) assay. In addition, the adherent behavior of tooth germ cells on various surface structures of PHBHHx was observed under a fluorescence microscope after staining of the cytoskeletal filamentous actin of the cells. It was found that cell compatibility of the PHBHHx membranes made from the phase inversion method (p-PHBHHx) was better than that of the other PHBHHx membranes. The results also revealed that tooth germ cells cultured on the PHBHHx membranes with porous surface structure were well spread relative to those on the fibrous structure of PHBHHx membranes. Therefore, PHBHHx membranes with a porous surface structure can encourage either cell adhesion or cell proliferation. PHBHHx membranes with a porous morphology satisfy biomaterial requirements for a scaffold for tooth regeneration.