World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EVALUATION OF ULTRASOUND KIDNEY IMAGES USING DOMINANT GABOR WAVELET (DoM-GW) FOR COMPUTER ASSISTED DISORDER IDENTIFICATION AND CLASSIFICATION

    https://doi.org/10.4015/S1016237207000501Cited by:0 (Source: Crossref)

    A study on ultrasound kidney images using proposed dominant Gabor wavelet is made for the automated diagnosis and classification of few important kidney categories namely normal, medical renal diseases and cortical cyst. The acquired images are initially preprocessed to retain the pixels of kidney region. Out of 30 Gabor wavelets, a unique dominant Gabor wavelet is determined by estimating the similarity metrics between original and reconstructed Gabor image. The Gabor features are then evaluated for each image. These derived features are mapped onto 2D feature space using k-mean clustering algorithm to group the data of similar class. The decision boundaries are formulated using linear discriminant function between the data sets of three kidney categories. A k-NN classifier module is used to identify the query input US kidney image category. The results show that the proposed dominant Gabor wavelet provides the classification efficiency of 87.33% for NR, 76.66% for MRD and 83.33% for CC. The overall classification efficiency improves by 18.89% compared to the classifier trained with features obtained by considering all the Gabor wavelets. The outputs of the proposed decision support systems are validated with medical expert to measure the actual efficiency. Also the overall discriminating ability of the systems is accessed with performance evaluation measure – f-score. It has been observed that the dominant Gabor wavelet improves the classification efficiency appreciably. Hence, the proposed method enhances the objective classification and explores the possibility of implementing a computer-aided diagnosis system exclusively for ultrasound kidney images.