World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

LEARNING PATTERNS OF LIVER MASSES USING IMPROVED RBF NETWORKS

    https://doi.org/10.4015/S1016237210001852Cited by:2 (Source: Crossref)

    This study proposes a diagnosis system for liver masses based on the improved radial basis function (RBF) neural networks. In this article, RBF networks are improved by sigmoid function and the growing and pruning algorithm. The proposed improved RBF networks adopt the sigmoid function as their kernel due to its increased flexibility over the Gaussian kernel. Furthermore, the growing and pruning algorithm is used to adjust the network size dynamically according to the neuron's significance. This investigation formulates discriminating among cysts, hepatoma, cavernous hemangioma, and normal tissue as a supervised learning problem. The current work calculates several texture and gray-level features derived from regions of interest as input in the proposed classifier. Receiver operating characteristic (ROC) curves evaluate the diagnosis performance, and demonstrate the proposed method's good performance.