World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A COMBINED REGULARIZATION ALGORITHM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY SYSTEM USING RECTANGULAR ELECTRODES ARRAY

    https://doi.org/10.4015/S1016237212500263Cited by:5 (Source: Crossref)

    A novel Electrical Impedance Tomography system with rectangular electrodes array and back electrode is proposed. This system could reconstruct a deeper target and is easy to operate. By studying different reconstructed algorithms: Tikhonov regularization and the Newton's One-step Error Reconstructor (NOSER), a combined regularization algorithm is proposed. The L-curve and posteriori method are used to choose Tikhonov and NOSER regularization parameter. Two evaluation parameters of reconstructed algorithm: normalization mean square distance criterion (NMSD), normalized mean absolute distance criterion (NMAD) are used to evaluate the result's precision of inverse problem quantificationally. The comparison among Tikhonov regularization, NOSER and the combined regularization shows that the ill-condition and the error of inverse problem are reduced. This new algorithm can decrease condition number by 70%, NMSD by 51%, and NMAD by 41% at least. Simulate results show that the combined regularization algorithm could reconstructed the target image in the depth from 10–40 mm. The experimental results show that a 15 mm × 9 mm × 9 mm cuboids whose depth is 35 mm could be distinguished. The performance of this system and the combined regularization algorithm demonstrate significantly better spatial resolution and minor reconstructed error.