World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FATIGUE DETECTION USING THE STRENGTH OF DOMINANT EEG SOURCE: A BEAMFORMING APPROACH

    https://doi.org/10.4015/S1016237218500230Cited by:5 (Source: Crossref)

    It is evident that the electroencephalogram (EEG) rhythms are slightly changed when the efficacy of mental activity declines (brain fatigue). Nonetheless, this slight change is not easily detectable by the so far suggested scalp EEG features. The goal of this paper is to propose an EEG-based biomarker, which has a congruity to the mental fatigue variation to detect the transition from non-fatigue to the fatigue mental state. The strength of the dominant EEG source, extracted by minimum variance beamformer (MVB), is proposed here as a discriminative feature to remarkably classify the two mental states. To assess the proposed scheme, EEG signals of 17 volunteers were recorded via 32 electrodes before and after taking an exhausting mental exam (3h) and the extracted EEG features were labeled as non-fatigue and fatigue, respectively. After removing the eye-blink effect, the proposed feature along with the conventional EEG features were extracted from the recorded EEGs and then applied to support vector machine (SVM) and 1-nearest neighbor (1NN) classifiers in order to differentiate these two mental states. The best result is achieved by applying the proposed feature to the SVM classifier providing 97.06% classification accuracy which is significantly (p<0.05) superior to its counter parts.