World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A MACHINE LEARNING APPROACH BASED ON SVM FOR CLASSIFICATION OF LIVER DISEASES

    https://doi.org/10.4015/S1016237220500180Cited by:19 (Source: Crossref)

    The liver is an organ in the body that plays an important role in the production and secretion of the bile. Recently, the number of liver patients are increasing because of the inhalation of harmful gases, the consumption of contaminated foods, herbs, and narcotics. Today, classification algorithms are widely used in diverse medical applications. In this paper, the classification of the liver, and non-liver patients is performed based on a support vector machine (SVM) on two datasets. To this end, the dataset is normalized and then sorted based on a proposed algorithm. After that, the feature selection is performed in order to remove the outliers and missing data. Then, 10-fold cross-validation is used for the data partition. In the end, the classification models of Linear, Quadratic and Gaussian SVM are defined and performance evaluation of the proposed method is investigated by calculation of F1-score, accuracy, and sensitivity. The results show that ILPD data have maximum accuracy, sensitivity, and F1-score of 90.9%, 89.2%, and 94%, respectively, so that a minimum improvement of 17.9% is obtained in accuracy than previous works. Additionally, the highest accuracy, sensitivity, and F1-score of BUPA data is 92.2%, 89%, and 94.3%, separately.