World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PREDICTING NUCLEOLAR PROTEINS USING SUPPORT-VECTOR MACHINES

    https://doi.org/10.1142/9781848161092_0005Cited by:0 (Source: Crossref)
    Abstract:

    The intra-nuclear organisation of proteins is based on possibly transient interactions with morphologically defined compartments like the nucleolus. The fluidity of trafficking challenges the development of models that accurately identify compartment membership for novel proteins. A growing inventory of nucleolar proteins is here used to train a support-vector machine to recognise sequence features that allow the automatic assignment of compartment membership. We explore a range of sequence-kernels and find that while some success is achieved with a profile-based local alignment kernel, the problem is ill-suited to a standard compartment-classification approach.