Bioactive Composite Materials for Bone Tissue Engineering Scaffolds
Synthetic bioactive and bioresorbable composite materials are becoming increasingly important as scaffolds for bone tissue engineering. Next generation biomaterials should combine bioactive and bioresorbable properties to activate in vivo mechanisms of tissue regeneration, stimulating the body to heal itself and leading to replacement of the scaffold by the regenerating tissue. In the present chapter composite materials based on smart combinations of biodegradable polymers and bioactive ceramics, including hydroxyapatite and bioactive glasses, are discussed as suitable materials for scaffold fabrication. These composites exhibit tailored physical, biological and mechanical properties as well as predictable degradation behaviour. The appropriate selection of a particular composite for a given application requires a detailed understanding of relevant cells and/or tissue response. Knowledge concerning interactions between cells and their immediate local environment in composite scaffolds has deeply improved in the last years. An overview of these findings is presented highlighting the influence of material processing methods, scaffold microstructure as well as the importance of the nature and amount of the bioactive ceramic particulate included in specific polymer matrices. The chapter also emphasises the response diversity according to the cell type used in vitro or the chosen in vivo models (species and location), suggesting the utility of standardisation in this field of biomaterials science. Bioactive composites discussed in this chapter, enhanced by microstructural optimisation and surface engineering, are suggested as the materials of choice for development of optimal bone tissue engineering scaffolds.