World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SITE-SPECIFIC ANALYSIS OF RESPONSE PROPERTIES OF SODIUM CLUSTERS

    https://doi.org/10.1142/9781848162389_0007Cited by:0 (Source: Crossref)
    Abstract:

    A scheme we have formulated recently for partitioning the total dipole moments and polarizabilities of finite systems into site-specific contributions is used to analyze the structure-/shape- and size-specific aspects of the dipole moments and polarizabilities of small sodium clusters. The procedure is based on dividing the system volume into cells associated with its atoms. The site-specific, or atomic, dipole moments and polarizabilities are computed from the charge densities within the individualcells (“atomic volumes”) and the changes in these densities in response to an external electric field. The atomic dipole moments and polarizabilities are further partitioned into local (or “dipole”) and “charge-transfer” components. It is shown that the polarizabilities associated with the individual Na atoms vary considerably with the structure/shape of the cluster and the location of the atom within a given structure. Surface atoms, especially those at edges, have larger polarizabilities than interior atoms. The contribution of the charge-transfer components to the total polarizability increases with the cluster size.