World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON MODELING OF GENE EXPRESSION PATTERNS IN THE DROSOPHILA EMBRYO BY THE GENE CIRCUIT METHOD

    https://doi.org/10.1142/9781848162389_0032Cited by:0 (Source: Crossref)
    Abstract:

    We review some recent results of modeling the pattern formation by segmentation genes during the early development of the Drosophila embryo. The study of gene expression patterns is based on the “gene circuit” method consisting of four steps: obtaining gene expression experimental data, formulating a model, fitting the model to the data, and inferring new biology from the analysis of results. The biological data has the form of processed images of immunostained embryos and is adopted in the form of concentration curves for proteins coded by various segmentation genes averaged over many embryos. The model is formulated as deterministic reaction-diffusion equations with protein concentrations in many cell nuclei as state variables. The values of parameters in the model are calculated by fitting the solution of model equations to the experimental concentration curves. We also describe how the gene circuit approach allows one to elucidate a role in the pattern formation played by nuclear cleavages in the developing embryo.