World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A MAX-FLOW BASED APPROACH TO THE IDENTIFICATION OF PROTEIN COMPLEXES USING PROTEIN INTERACTION AND MICROARRAY DATA

    https://doi.org/10.1142/9781848162648_0005Cited by:10 (Source: Crossref)
    Abstract:

    The emergence of high-throughput technologies leads to abundant protein-protein interaction (PPI) data and microarray gene expression profiles, and provides a great opportunity for the identification of novel protein complexes using computational methods. Although it has been demonstrated in the literature that methods using protein-protein interaction data alone can successfully predict a large number of protein complexes, the incorporation of gene expression profiles could help refine the putative complexes and hence improve the accuracy of the computational methods.

    By combining protein-protein interaction data and microarray gene expression profiles, we propose a novel Graph Fragmentation Algorithm (GFA) for protein complex identification. Adapted from a classical max-flow algorithm for finding the (weighted) densest subgraphs, GFA first finds large (weighted) dense subgraphs in a protein-protein interaction network and then breaks each such subgraph into fragments iteratively by weighting its nodes appropriately in terms of their corresponding log fold changes in the microarray data, until the fragment subgraphs are suffciently small. Our extensive tests on three widely used protein-protein interaction datasets and comparisons with the latest methods for protein complex identification demonstrate the superior performance of our method in terms of accuracy, effciency, and capability in predicting novel protein complexes. Given the high specificity (or precision) that our method has achieved, we conjecture that our prediction results imply more than 200 novel protein complexes.