World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ESTIMATING SUPPORT FOR PROTEIN-PROTEIN INTERACTION DATA WITH APPLICATIONS TO FUNCTION PREDICTION

    https://doi.org/10.1142/9781848162648_0007Cited by:8 (Source: Crossref)
    Abstract:

    Almost every cellular process requires the interactions of pairs or larger complexes of proteins. High throughput protein-protein interaction (PPI) data have been generated using techniques such as the yeast two-hybrid systems, mass spectrometry method, and many more. Such data provide us with a new perspective to predict protein functions and to generate protein-protein interaction networks, and many recent algorithms have been developed for this purpose. However, PPI data generated using high throughput techniques contain a large number of false positives. In this paper, we have proposed a novel method to evaluate the support for PPI data based on gene ontology information. If the semantic similarity between genes is computed using gene ontology information and using Resnik's formula, then our results show that we can model the PPI data as a mixture model predicated on the assumption that true protein-protein interactions will have higher support than the false positives in the data. Thus semantic similarity between genes serves as a metric of support for PPI data. Taking it one step further, new function prediction approaches are also being proposed with the help of the proposed metric of the support for the PPI data. These new function prediction approaches outperform their conventional counterparts. New evaluation methods are also proposed.