World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Liquid State Machines: Motivation, Theory, and Applications

    https://doi.org/10.1142/9781848162778_0008Cited by:97 (Source: Crossref)
    Abstract:

    The Liquid State Machine (LSM) has emerged as a computational model that is more adequate than the Turing machine for describing computations in biological networks of neurons. Characteristic features of this new model are (i) that it is a model for adaptive computational systems, (ii) that it provides a method for employing randomly connected circuits, or even “found” physical objects for meaningful computations, (iii) that it provides a theoretical context where heterogeneous, rather than stereo typical, local gates, or processors increase the computational power of a circuit, (iv) that it provides a method for multiplexing different computations (on a common input) within the same circuit. This chapter reviews the motivation for this model, its theoretical background, and current work on implementations of this model in innovative artificial computing devices.