World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Robotic control for cognitive UWB radar

    https://doi.org/10.1142/9789811203480_0017Cited by:1 (Source: Crossref)
    Abstract:

    In the paper, we describe a trajectory planning problem for a six-DoF robotic manipulator arm that carries an ultra-wideband (UWB) radar sensor with synthetic aperture (SAR). The resolution depends on the trajectory and velocity profile of the sensor head. The constraints can be modeled as an optimization problem to obtain a feasible, collision-free target trajectory of the end-effector of the manipulator arm in Cartesian coordinates that minimizes observation time. For 3D reconstruction, the target is observed in multiple height slices. For through-the-wall radar the sensor can be operated in sliding mode for scanning larger areas. For IED inspection the spotlight mode is preferred, constantly pointing the antennas towards the target to obtain maximum azimuth resolution. UWB sensors typically use a wide spectrum shared by other RF communication systems. This may become a limiting factor on system sensitivity and severely degrade the image quality. Cognitive radars can adapt dynamically their bandwidth, frequency and other transmit parameters to the radio frequency environment to avoid interference with primary users.