World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ASSESSMENT OF WATER QUALITY PARAMETERS BY USING MULTIVARIATE ANALYSIS AND WATER QUALITY INDICES OF AN INDUSTRIAL SEAPORT RIVERBANK AREA IN BANGLADESH

    https://doi.org/10.1142/9789811275449_0023Cited by:0 (Source: Crossref)
    Abstract:

    The present study investigated the physicochemical and metal concentrations in water samples collected from Pasur River, Bangladesh. Mongla seaport stands on the bank of this river. Many industries and other commercial sectors situated in this port area are discharging their wastes into the river without proper treatment. The concentration range of TSS, chloride, iron (Fe), and manganese (Mn) were from 363.2 to 1482.7, 108.2 to 708.93, 1.13 to 2.75, and 0.19 to 1.41 mg/L, significantly exceeding the health-based guideline of WHO and Bangladesh (DoE) standards. The average pH value was 8.73, higher than the WHO and DoE standard limit. The water quality evaluation indices such as Metal Index (MI), Comprehensive Pollution Index (CPI), and Water Quality Index (WQI) were used to determine the pollution levels of the Pasur River. WQI (ranging from 391.3 to 1336.1), CPI (6.71 to 23.13), and MI (7.23 to 23.27) were very high and greatly exceeded standard limits indicating that the Pasur River water is highly polluted. The results of Pearson correlation analysis, principal component analysis (PCA), and cluster analysis (CA) indicated that the sources of pollutants were both geogenic and anthropogenic. The spatial distribution of quality indices and cluster groups indicates that the studied river’s urban and seaport areas were more contaminated. The primary anthropogenic sources are municipal wastewater, industrial effluents, runoff from an agricultural area, local bazar, car garage wastes, highway, and stormwater runoff.